
Geom. Funct. Anal. Vol. 22 (2012) 878–937

DOI: 10.1007/s00039-012-0186-3

Published online August 25, 2012
c© 2012 Springer Basel AG GAFA Geometric And Functional Analysis

RESTRICTION OF TORAL EIGENFUNCTIONS
TO HYPERSURFACES AND NODAL SETS

Jean Bourgain and Zeév Rudnick

Abstract. We give uniform upper and lower bounds for the L2 norm of the
restriction of eigenfunctions of the Laplacian on the three-dimensional standard
flat torus to surfaces with non-vanishing curvature. We also present several related
results concerning the nodal sets of eigenfunctions.

1 Introduction

Let M be a smooth Riemannian surface without boundary, Δ the corresponding
Laplace–Beltrami operator and Σ a smooth curve in M . Burq, Gérard and Tzvet-
kov [BGT07] established bounds for the L2-norm of the restriction of eigenfunctions
of Δ to the curve Σ, showing that if −Δϕλ = λ2ϕλ, λ > 0, then

||ϕλ||L2(Σ) � λ1/4||ϕλ||L2(M) (1.1)

and if Σ has non-vanishing geodesic curvature then (1.1) may be improved to

||ϕλ||L2(Σ) � λ1/6||ϕλ||L2(M). (1.2)

Both (1.1), (1.2) are saturated for the sphere S2.
In [BGT07] it is observed that for the flat torus M = T

2, (1.1) can be improved
to

||ϕλ||L2(Σ) � λε||ϕλ||L2(M), ∀ε > 0 (1.3)

due to the fact that there is a corresponding bound on the supremum of the eigen-
functions. They raise the question whether in (1.3) the factor λε can be replaced by
a constant, that is whether there is a uniform L2 restriction bound. As pointed out
by Sarnak [Sar], if we take Σ to be a geodesic segment on the torus, this particular
problem is essentially equivalent to the currently open question of whether on the
circle |x| = λ, the number of lattice points on an arc of size λ1/2 admits a uniform
bound.

In [BGT07] results similar to (1.1) are also established in the higher dimensional
case for restrictions of eigenfunctions to smooth submanifolds, in particular (1.1)
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holds for codimension-one submanifolds (hypersurfaces) and is sharp for the sphere
Sd−1. Moreover (1.2) remains valid for hypersurfaces with positive curvature [Hu09].

In this paper we pursue the improvements of (1.2) for the standard flat d-dimen-
sional tori T

d = R
d/Zd, considering the restriction to (codimension-one) hypersur-

faces Σ with non-vanishing curvature.

Main Theorem Let d = 2, 3 and let Σ ⊂ T
d be a real analytic hypersurface with

non-zero curvature. There are constants 0 < c < C < ∞ and Λ > 0, all depending
on Σ, so that all eigenfunctions ϕλ of the Laplacian on T

d with λ > Λ satisfy

c||ϕλ||2 ≤ ||ϕλ||L2(Σ) ≤ C||ϕλ||2. (1.4)

Observe that for the lower bound, the curvature assumption is necessary, since
the eigenfunctions ϕ(x) = sin(2πn1x1) all vanish on the hypersurface x1 = 0. In
fact this lower bound implies that a curved hypersurface cannot be contained in the
nodal set of eigenfunctions with arbitrarily large eigenvalues.

It was shown in [BR11a] that this last property of the nodal sets of toral eigen-
functions hold in arbitrary dimension d. As we point out in Sect. 10, the argument
from [BR11a] implies in fact a bound for the d − 2 dimensional Hausdorff measure
of the intersection of nodal sets with a fixed hypersurface Σ:

Theorem 1.1. Let Σ ⊂ T
d be a real analytic hypersurface with nowhere vanishing

curvature. Then for λ > λΣ, the nodal set N of any eigenfunction ϕλ satisfies

hd−2(N ∩ Σ) < cΣλ. (1.5)

For dimension d = 2, this means an upper bound for the number of intersection
points of a fixed curve with the nodal lines. Interestingly, using the Main Theorem,
one can show that conversely:

Theorem 1.2. Let Σ ⊂ T
2 be a real analytic non-geodesic curve. There is λΣ such

that for λ > λΣ, the nodal set N of any eigenfunction ϕλ satisfies

#(N ∩ Σ) � λ1−ε for all ε > 0 (1.6)

and for d = 3, the following property

Theorem 1.3. Let Σ ⊂ T
3 be as in the Main Theorem. There is λΣ such that for

λ > λΣ, the nodal set N of any eigenfunction ϕλ intersects Σ.

Returning to the results of [BGT07] for smooth Riemannian surfaces, let us point
out that there is a close connection between estimates on ‖ϕλ‖L2(Σ) with Σ a geode-
sic segment and bounds on the L4-norm ‖ϕλ‖L4(M). Recall Sogge’s general estimate
for the Lp-norm [Sog88]

‖ϕλ‖Lp(M) ≤ Cλδ(p)‖ϕλ‖L2(M) (1.7)
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where

δ(p) =

{
1
2(1

2 − 1
p) if 2 ≤ p ≤ 6

1
2 − 2

p if 6 ≤ p ≤ ∞.
(1.8)

The following inequalities were established in [Bou09]

‖ϕλ‖L2(Σ) ≤ Cλ
1
2p ‖ϕλ‖Lp(M) (1.9)

if Σ ⊂ M is a geodesic segment and p ≥ 2, and conversely

‖ϕλ‖L4(M) � λ
1
16

+ε max
Σ

‖ϕλ‖
1
4

L2(Σ). (1.10)

where the maximum is over all geodesic segments Σ ⊂ M of unit length. Hence
(1.9), (1.10) imply that improving upon the restriction bound (1.1) is essentially
equivalent with convexity breaking for the L4-norm (see also [Sog11]). Of course
for M = T

2, ‖ϕλ‖∞ � λε and previous considerations are of no interest. However,
the example of an integrable torus M constructed in [Bou93] provides a sequence of
eigenfunctions ϕλ and a geodesic segment Σ ⊂ M such that

‖ϕλ‖L6(M) ∼ λ
1
6 and ‖ϕλ‖L2(Σ) ∼ λ

1
4 . (1.11)

Thus this example saturates the inequality (1.9) for p = 6 and also the [BGT07]
bound (1.1) (providing a surface quite different from the sphere).

The proof of the Main Theorem for d = 2 is rather simple (compared with d = 3)
and we describe it next, as an illustration of the method and some of the arithmetic
ingredients used, see [BR09].

Denote by σ the normalized arc-length measure on the curve Σ. Using the method
of stationary phase, one sees that if Σ has non-vanishing curvature then the Fourier
transform σ̂ decays as

|σ̂(ξ)| � |ξ|−1/2, ξ �= 0. (1.12)

Moreover |σ̂(ξ)| ≤ σ̂(0) = 1 with equality only for ξ = 0, hence

sup
0�=ξ∈Z2

|σ̂(ξ)| ≤ 1 − δ, (1.13)

for some δ = δΣ > 0.
An eigenfunction of the Laplacian on T

2 is a trigonometric polynomial of the
form:

ϕ(x) =
∑

|n|=λ
ϕ̂(n)e(n · x)

(where e(z) := e2πiz), all of whose frequencies lie in the set E := Z
2 ∩λS1. As is well

known, in dimension d = 2, #E � λε for all ε > 0. Moreover, by a result of Jarnik
[Jar26], any arc on λS1 of length at most cλ1/3 contains at most two lattice points
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(Cilleruelo and Cordoba [CC92] showed that for any δ < 1
2 , arcs of length λδ contain

at most M(δ) lattice points and in [CG07] it is conjectured that this remains true
for any δ < 1). Hence we may partition,

E =
⋃
α

Eα (1.14)

where #Eα ≤ 2 and dist(Eα, Eβ) > cλ1/3 for α �= β. Correspondingly we may write,

ϕ =
∑
α

ϕα, ϕα(x) =
∑
n∈Eα

ϕ̂(n)e(nx), (1.15)

so that ||ϕ||22 =
∑

α ||ϕα||22 and∫
Σ

|ϕ|2dσ =
∑
α

∑
β

∫
Σ

ϕαϕβdσ. (1.16)

Applying (1.12) we see that
∫
Σ ϕ

αϕβdσ � λ−1/6 if α �= β and because #E � λε

the total sum of these nondiagonal terms is bounded by λ−1/6+ε||ϕ||22. It suffices
then to show that the diagonal terms satisfy

δ||φα||22 ≤
∫
Σ

|φα|2dσ ≤ 2||φα||22. (1.17)

This is clear if Eα = {n} while if Eα = {m,n} then∫
Σ

|φα|2dσ = |ϕ̂(m)|2 + |ϕ̂(n)|2 + 2Re ϕ̂(m)ϕ̂(n)σ̂(m− n), (1.18)

and then (1.17) follows from (1.13) This proves the Theorem for d = 2.
The proof of the Main Theorem for dimension d = 3 is considerably more involved

and occupies Sects. 2–9 of the paper. Arguing along the lines of the two-dimensional
case gives an upper bound of λε. To get the uniform bound for d = 3 we need
to replace the upper bound (1.12) for the Fourier transform of the hypersurface
measure by an asymptotic expansion, and then exploit cancellation in the resulting
exponential sums over the sphere. A key ingredient there is controlling the number
of lattice points in spherical caps.

To state some relevant results, denote as before by E = Z
d ∩ λSd−1 the set of

lattice points on the sphere of radius λ. We have #E � λd−2+ε. Let Fd(λ, r) be the
maximal number of lattice points in the intersection of E with a spherical cap of size
r > 1. A higher-dimensional analogue of Jarnik’s theorem implies that if r � λ1/(d+1)

then all lattice points in such a cap are co-planar, hence Fd(r, λ) � rd−3+ε in that
case, for any ε > 0. For larger caps, we show:
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Proposition 1.4. (i) Let d = 3. Then for any η < 1
15 ,

F3(λ, r) � λε
(
r
( r
λ

)η
+ 1
)
. (1.19)

(ii) Let d = 4. Then

F4(λ, r) � λε
(
r3

λ
+ r3/2

)
. (1.20)

(iii) For d ≥ 5 we have

Fd(λ, r) � λε
(
rd−1

λ
+ rd−3

)
(1.21)

(the factor λε is redundant for large d).

The term rd−1/λ concerns the equidistribution of E , while the term rd−3 measures
deviations related to accumulation in lower dimensional strata.

Only (1.19) (d = 3) is relevant for our purpose (Lemma 6.8 in the paper, proved in
Section 9) and (1.20), (1.21) for d ≥ 4 (proven in Appendix A.) were included to pro-
vide a more complete picture. We point out that the argument used to obtain (1.19)
is based on certain diophantine considerations and dimension reduction, hence dif-
fers considerably from the proof of (1.20), (1.21) using standard Hardy–Littlewood
circle method and Kloosterman’s refinement for d = 4.

The second result expresses a mean-equidistribution property of E . Partition the
sphere λS2 into sets Cα of size λ1/2, for instance by intersecting with cubes of that
size. Since #E � λ1+ε, one may expect that #Cα ∩ E � λε. We show (in joint work
with Sarnak [BRS]) that as a consequence of “Linnik’s basic Lemma”, this holds in
the mean square:

Lemma 1.5. ∑
α

[#(E ∩ Cα)]2 � λ1+ε, ∀ε > 0. (1.22)

Finally, considering very large caps r > λ1−δ, there is an estimate

Lemma 1.6.

#(E ∩ Cr) �
( r
λ

)2
λ1+ε for r > λ1−δ0 (1.23)

(δ0 > 0 some absolute constant).

which is a consequence of Linnik’s equidistribution property (see Sect. 2.1). While
we make essential use of Lemma 1.5 in our analysis, Lemma 1.6 will not be needed,
strictly speaking.
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Let 1 < r < λ and let C, C ′ be spherical r-caps on λS2 of mutual distance at
least 10r. Following the argument for d = 2, we need to bound exponential sums of
the form ∑

n∈C

∑
n′∈C′

ϕ̂(n)ϕ̂(n′)e(ψ(n− n′)), ||ϕ||2 = 1 (1.24)

where ψ is the support function of the hyper-surface Σ, which appears in the asymp-
totic expansion of the Fourier transform of the surface measure on Σ, see Sect. 3.
For instance, in the case that Σ = {|x| = 1} is the unit sphere then h(ξ) = |ξ|.

For r < λ1−ε we simply estimate (1.24) by F3(λ, r) (see (1.19)). When λ1−ε <
r < λ this bound does not suffice and we need to exploit cancellation in the sum
(1.24).

Lemma 1.7. There is δ > 0 so that (1.24) admits a bound of λ1−δ for λ � 1.

This statement depends essentially on the equidistribution of E in caps of size√
λ, as expressed in Lemma 1.5.
Using Taylor expansions of the function ψ(x− y) with x, y restricted to S2 and

suitable coordinate restrictions, Lemma 1.7 is eventually reduced to the following
one-dimensional exponential sum estimate (proven in Sect. 6):

Lemma 1.8. Let β � 1 and X,Y ⊂ [0, 1] arbitrary discrete sets such that |x −
x′|, |y − y′| > β−1/2 for x �= x′ ∈ X and y �= y′ ∈ Y . Then∣∣∣∣∣∣

∑
x∈X

∑
y∈Y

e(βxy + β1/3x2y2)

∣∣∣∣∣∣� β1−κ (1.25)

for some κ > 0.

Extending the Main Theorem to arbitrary dimension d remains unsettled at this
point. We make the following

Conjecture 1.9. Let d ≥ 2 be arbitrary and Σ ⊂ T
d a real analytic hypersurface.

Then, for some constant CΣ, all eigenfunctions ϕλ of T
d satisfy

‖ϕλ‖L2(Σ) ≤ CΣ‖ϕλ‖2. (1.26)

If moreover Σ has nowhere vanishing curvature and λ > λΣ, for some cΣ > 0, also

‖ϕλ‖L2(Σ) ≥ cΣ‖ϕλ‖2. (1.27)

It should be pointed out that in our proof of the Main Theorem for d = 2, 3, only
distributional properties of E = Z

d ∩ [|x| = λ] were exploited, but not the fact that
E actually consists of lattice points. In Sect. 11, we give an example, for d ≥ 8, of
sets Sλ ⊂ λSd−1 satisfying the ‘ideal’ distributional property

|x− y| � λ
1

d−1 for x �= y in Sλ (1.28)
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and such that the Fourier restriction operator

L2(Sd−1, dσ) −→ �2(Sλ) : μ �→ μ̂|Sλ
(1.29)

has unbounded norm for λ → ∞. This illustrates the difficulty for carrying out our
analysis in larger dimension.

As said earlier, even for d = 2 and Σ a straight line segment in T
2, (1.26) remains

open and is roughly equivalent with the arithmetic statement that the number of
lattice points on an arc of size

√
λ on the circle |x| = λ is bounded by an absolute

constant. An easy argument in [BR11b] shows that this last property is true for most
E = λ2 and in fact the elements of {|x|2 = E} are at least � λ1−ε separated, for all
ε > 0. In Sect. 12, we establish the following

Theorem 1.10. Let Σ ⊂ T
2 be a smooth curve. Then for almost all E = λ2, there

is a uniform restriction bound

‖ϕλ‖L2(Σ) ≤ C‖ϕλ‖2. (1.30)

In Sect. 13 we obtain an analogue for T
d, d ≥ 3 of a theorem of Nazarov and

Sodin [NS09] on the number of nodal domains.

Theorem 1.11. Let d ≥ 3 and E = λ2 be sufficiently large. Then for a ‘typi-
cal’ element ϕλ of the eigenfunction space −Δϕ = Eϕ, the nodal set N has ∼ λd

components.

Recalling Courant’s nodal domain theorem, the interest of Theorem 1.11 is the
lower bound on the number of nodal domains.

Almost all the subsequent analysis in the paper relates to d = 3 and T
3-eigen-

functions. Let us stress again that the arithmetic structure of the frequencies of the
trigonometric polynomials involved is essential here.

2 Lattice Points in Spherical Caps

2.1 Lattice points on spheres. We recall what is known concerning the total
number ρd(R2) of lattice points on the sphere of radius R. Throughout we assume,
as we may, that n := R2 is an integer. We have a general upper bound

ρd(R2) � Rd−2+ε, ∀ε > 0 (2.1)

and in dimension d ≥ 5 we in fact have both a lower and upper bound of this
strength:

ρd(R2) ≈ Rd−2, d ≥ 5. (2.2)

In smaller dimensions both the lower and upper bound (2.1) need not hold. For
instance if n = 2k is a power of 2 then ρ4(R2) = 24 is bounded. The situation
in dimension d = 3 is particularly delicate. It is known that ρ3(n) > 0 if and
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only if n := R2 �= 4k(8m − 1). There are primitive lattice points on the sphere
of radius R =

√
n (that is x = (x1, x2, x3) with gcd(x1, x2, x3) = 1) if an only if

n �= 0, 4, 7 mod 8. Concerning the number ρ3(R2) of lattice points, the upper bound
(2.1) is still valid, and if there are primitive lattice points then there is a lower bound
of ρ3(R2) � R1−o(1) but there are arbitrarily large R’s so that

ρ3(R2) � R log logR. (2.3)

A fundamental result conjectured by Linnik (and proved by him assuming the
Generalized Riemann Hypothesis), that for n �= 0, 4, 7 mod 8, the projections of these
lattice points to the unit sphere become uniformly distributed on the unit sphere as
n → ∞. This was proved unconditionally by Duke [Duk88,DS90] and Golubeva and
Fomenko [GF90], following a breakthrough by Iwaniec [Iwa87].

2.2 Lattice points in spherical caps: Statement of results. Let
→
ζ ∈ Sd−1

be a unit vector, R � 1, and r = o(R). Consider the spherical cap C = C(R
→
ζ , r)

which is the intersection of the sphere |→
x| = R with the ball of radius ≈ r around

R
→
ζ . Set

Fd(R, r) = max
→
ζ ∈Sd−1

#Z
d ∩ C(R

→
ζ , r)

which is the maximal number of lattice points in a spherical cap of size r on the
sphere |→

x| = R. We want to give an upper bound for Fd(R, r) in the case of dimension
d = 3. The results which will be proven in this section are as follows:

(i) For all ε > 0,

F3(R, r) � Rε
(
1 +

r2

R1/2

)
. (2.4)

This is an immediate consequence of a Jarnik-type result on non-coplanar lattice
points in small caps. It is only useful for small caps, when r � R1/2.

For larger caps we shall show the following bound:
(ii) For any η < 1

15 ,

F3(R, r) � Rε
(
1 + r

( r
R

)η)
. (2.5)

It is natural to conjecture that F3(R, r) � Rε
(
1 + r2

R

)
for r < R1−δ.

2.3 Intersections with hyperplanes. Let κd(R) be the maximal number of
lattice points in the intersection of the sphere |→

x| = R in R
d and a hyperplane.

For dimension d = 2,

κ2(R) ≤ 2

while in dimension d = 3 we have

κ3(R) � Rε, ∀ε > 0. (2.6)
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2.4 Small caps.

Lemma 2.1. For a spherical cap C of size r on the sphere of radius R in R
3 the

number of lattice points in C is at most

#C ∩ Z
3 � Rε

(
1 +

r2

R
1
2

)
. (2.7)

Proof. Firstly, we note that if the cap has radius r � R1/4 then it contains only a
O(Rε) lattice points. This can be deduced from Jarnik’s method [Jar26] and also from
a general result of Andrews [And63] that if C is any convex body in R

d with volume V
then the number of lattice points on its boundary which are not coplanar is �V

d−1
d+1 .

In our case of a cap in dimension 3, the base of the cap has area ≈ r2 and if θ
is the opening of the cap, so that r ≈ Rθ, then the height of the cap is about
R − R cos θ ≈ Rθ2 ≈ r2/R, hence the volume of the cap is V ≈ r4/R. Thus if
r < R1/4 then any such cap will contain at most (say) 100 non-coplanar lattice
points. Any lattice points in the cap will lie on one of the plane sections of the cap
through any three of the 100 non-coplanar lattice points. Each such plane section
will contain at most Rε lattice points (uniformly as a function of the plane) and
hence the cap will contain at most O(Rε) lattice points.

Now, for a cap C of radius r � R1/4, divide it into caps of radius R1/4; the num-
ber of such caps will be ≈ area(C)/(R1/4)2 ≈ r2/R1/2, and hence the total number
of lattice points in C is at most Rε(1 + r2/R1/2). ��
2.5 A linear and sub-linear bound. We now turn to larger caps.

Here is a simple bound via slicing, using the fact that we can control the number
of lattice points in the intersection of a sphere and a hyperplane parallel to one of
the coordinate hyperplanes:

Lemma 2.2. In dimension d ≥ 2,

Fd(R, r) � (1 + r)κd(R). (2.8)

Proof. A ball of radius r is contained in a vertical slab of the form A < xd < A+ 2r
and hence all integer points in the intersection of the sphere |→

x| = R and the ball
|→
x − →

x0| < r lie in the union of the planes xd = k, A ≤ k ≤ A + 2r with k integer.
The intersection of each plane and the sphere |→

x| = R has at most κd(R) lattice
points, and therefore the total number of lattice points is at most (1 + r)κd(R). ��

In particular, for dimension d = 3 this says that

#C ∩ Z
3 � Rε(1 + r). (2.9)

We can improve on Lemma 2.2 by slicing with well-chosen planes rather than
vertical planes. More precisely, we have

Lemma 2.3. Let C be a cap of size r on the sphere {|→
x| = R} ⊂ R

3. Then for any
0 < η < 1/16,
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#C ∩ Z
3 � Rε

(
1 + r

( r
R

)η)
. (2.10)

Proof. It will involve several considerations.

(i) Finding good slices. We try to find an integer vector →
a ∈ Z

d and use slices
of the cap with the sections →

a.
→
x = k. We consider a larger cap C1 = C(R

→
a

|→a | , Rθ1)

of radius r1 = Rθ1 around R
→
a

|→a | which contains the original cap C. Thus we want
the new cap angle θ1 to satisfy

θ1 = θ +
∣∣∣→ζ −

→
a

|→
a|
∣∣∣. (2.11)

To bound the number of lattice points in the new cap C1, we exhaust them
by the parallel sections →

a.
→
x = k, which are orthogonal to the direction →

a of the
new cap. The distance between adjacent sections is 1/|→

a|. The number of sections
intersecting the cap C1 is bounded by |→

a| times the height of the cap, which is
R−R cos θ1 ≈ Rθ2

1. Hence the number ν(C1,
→
a) of sections intersecting the cap is

ν(C1,
→
a) � 1 +Rθ2

1|→
a| (2.12)

and the analysis above shows that the number of lattice points in the cap C1 is
bounded by

#C1 ∩ Z
d ≤ κd(R) · ν(C1,

→
a) � κd(R) · (1 +Rθ2

1|→
a|). (2.13)

To gain over the linear bound (2.9) we need to find some δ > 0 and a nonzero integer
vector →

a ∈ Z
d such that

Rθ2
1|→
a| � rθ2δ (2.14)

that is

θ + |→
ζ −

→
a

|→
a| | � θ

1
2
+δ

|→
a| 1

2

. (2.15)

Setting

Q = θ−1+2δ =
(
R

r

)1−2δ

(2.16)

then (2.15) is implied by requiring both

|→
a| ≤ Q (2.17)∣∣∣→ζ −

→
a

|→
a|
∣∣∣ ≤ 1

|→
a| 1

2Q
1
2
+γ

(2.18)

where we have set

γ :=
2δ

1 − 2δ
. (2.19)

Finding →
a ∈ Z

d as above is then our goal.
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(ii) Diophantine approximation. ��

Lemma 2.4. Fix an integer Q ≥ 1 and 0 < η < 1. Let
→
ζ = (ζ1, . . . , ζd) ∈ [−1, 1]d.

Then one of the following holds:
(1) There is Q ≤ q ≤ 2Q and

→
a ∈ Z

d such that

max
1≤j≤d

∣∣∣ζj − aj
q

∣∣∣ < η

Q
. (2.20)

(2) There are
→
b ∈ Z

d, with 0 < max |bj | < 1/η with∥∥∥∥∥∥
d∑
j=1

bjζj

∥∥∥∥∥∥ <
c

Qηd
(2.21)

where we denote by ‖x‖ the fractional part of x, or the distance of x to the nearest
integer.

Proof. Let 0 ≤ ψ ≤ 1 be a smooth bump function on the torus T
d, such that

(1) 0 ≤ ψ ≤ 1 for ‖x‖ < η/2
(2) ψ(x) = 0 for ‖x‖ > η

(3) |ψ̂(m)| � ηde−
√
η|m|.

If (2.20) fails, then

max
Q≤q<2Q,1≤j≤d

‖qζj‖ ≥ η

hence ∑
Q≤q<2Q

ψ(q
→
ζ ) = 0. (2.22)

Expressing this in a Fourier series gives (writing e(x) := e2πix)

0 = Qψ̂(0) +
∑

0�=b∈Zd

ψ̂(b)
∑

Q≤q<2Q

e(qζ · b)

> cQηd − c
∑
b �=0

ηde−
√
η|b|
(

|e(ζ · b) − 1| +
1
Q

)−1

> cQηd

⎛
⎝1 − c

∑
b �=0

e−
√
η|b| 1

Q‖ζ · b‖ + 1

⎞
⎠

> cQηd
(

1
2

− cη−d max
0<|b|<cη−1

1
Q‖ζ · b‖

)
.

Hence Q‖ζ · b‖ < cη−d for some nonzero b ∈ Z
d, |b| < cη−1.
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Lemma 2.5. Let ζ1, ζ2 ∈ [−1, 1], 0 < γ < 1/15, and Q �γ 1 an integer.
Then there is an integer 1 ≤ q ≤ Q and

→
a ∈ Z

2 so that

max
j=1,2

∣∣∣ζj − aj
q

∣∣∣� 1

q
1
2Q

1
2
+γ
. (2.23)

Remark. Dirichlet’s principle says that given
→
ζ ∈ R

2, and an integer K ≥ 1, we
can find 1 ≤ q ≤ K2 and →

a ∈ Z
2 so that

max
j=1,2

∣∣∣ζj − aj
q

∣∣∣ < 1
qK

. (2.24)

Lemma 2.5 improves on this when q is small.

Proof. Applying Lemma 2.4 with η = Q−γ , either we have an integer
Q ≤ q ≤ 2Q with ∣∣∣ζj − aj

q

∣∣∣ < 1
Q1+γ

≤
√

2

q
1
2Q

1
2
+γ

which gives us what we need, or else the second option in the statement of the lemma
occurs, that is there is some nonzero vector

→
b ∈ Z

2 with |b1| ≤ |b2| ≤ Qγ , and a ∈ Z

so that

|b1ζ1 + b2ζ2 + a| < 1
Q1−2γ

(2.25)

that is ∣∣∣ζ2 +
b1
b2
ζ1 +

a

b2

∣∣∣ < 1
|b1|Q1−2γ

. (2.26)

Now choose an integer Q1 so that

2Q
1+3γ

2 < Q1 <
1
4
Q1−6γ (2.27)

which is possible if 0 < γ < 1/15 and Q �γ 1.
Using Dirichlet’s principle, there is some 1 ≤ q1 ≤ Q1 and an integer a′ ∈ Z so

that ∣∣∣ζ1 − a′

q1

∣∣∣ < 1
q1Q1

. (2.28)

Define a1, a2 ∈ Z by

a1 = a′|b2|, −a2 = ±(b1a′ + aq1), q = q1|b2|. (2.29)

We claim that these satisfy the statement of the Lemma. Indeed, by (2.28) we have∣∣∣ζ1 − a1

q

∣∣∣ = ∣∣∣ζ1 − a′

q1

∣∣∣ < 1
q1Q1

(2.30)



890 J. BOURGAIN AND Z. RUDNICK GAFA

and due to (2.27) we have, since q1 = q/|b2| ≥ qQ−γ , that
1

q1Q1
<

1

2q1Q
1
2
+ 3γ

2

<
1

2q
1
2
1Q

1
2
+ 3γ

2

≤ 1

2q
1
2Q

1
2
+γ

(2.31)

giving |ζ1 − a1
q | < 1

2q
1
2Q

1
2 +γ

. Moreover using the small linear relation (2.26) between

ζ1 and ζ2 and replacing ζ1 by a1/q = a′/q1 we find∣∣∣ζ2 − a2

q

∣∣∣ = ∣∣∣ζ2 +
b1
b2

a′

q1
+
a

b2

∣∣∣
≤
∣∣∣ζ2 +

b1
b2
ζ1 +

a

b2

∣∣∣+ |b1|
|b2|
∣∣∣ζ1 − a′

q1

∣∣∣
<

1
|b2|Q1−2γ

+
1

q1Q1
.

Now since q1 < Q1 <
1
4Q

1−6γ we have

1
|b2|Q1−2γ

≤ 1

|b2| 1
2Q1−2γ

=
q

1
2
1

q
1
2Q1−2γ

<
1

2q
1
2Q

1
2
+γ

(2.32)

and combining with (2.31) we get∣∣∣ζ2 − a2

q

∣∣∣ < 1

q
1
2Q

1
2
+γ

as claimed. ��
2.6 Proof of Lemma 2.3. Assuming that |ζ3| = max |ζj |, we apply Lemma 2.5
to
( ζ1
ζ3
, ζ2ζ3 ) to find 1 ≤ q ≤ Q and a1, a2 ∈ Z so that

max
j=1,2

∣∣∣ζj
ζ3

− aj
q

∣∣∣ < 1

q
1
2Q

1
2
+γ
. (2.33)

Set →
a = (a1, a2, q) then |→

a| ≈ q and∣∣∣→ζ − ζ3
1
q

→
a
∣∣∣ < 1

q
1
2Q

1
2
+γ

≈ 1

|→
a| 1

2Q
1
2
+γ
. (2.34)

Since for any pair of nonzero vectors →
c ,

→
d we have by the triangle inequality∣∣∣ →

c

|→
c | −

→
d

|→
d|
∣∣∣ ≤ 2

|→
c − →

d|
|→
c | (2.35)

and hence also ∣∣∣→ζ −
→
a

|→
a|
∣∣∣� 1

|→
a| 1

2Q
1
2
+γ
.

Thus we have found →
a satisfying (2.17), (2.18), completing the proof of Lemma 2.3.

��
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3 The Fourier Transform of Surface-Carried Measures

Let Σ ⊂ R
3 be a real analytic surface with non-vanishing curvature and p ∈ Σ.

Applying a rigid motion, we may assume p = 0 and Σ locally parametrized around
(0, 0, 0) by a map

(x1, x2) �→ (
x1, x2, φ(x1, x2)

)
(3.1)

where φ is real-analytic on a neighborhood of (0, 0) as has the form

φ(x1, x2) = a1x
2
1 + a2x

2
2 +

∑
α+β≥3

aαβ x
α
1 x

β
2 (3.2)

with

a1 �= 0, a2 �= 0, |aαβ| < Cα+β .

Distinguishing the case a1a2 > 0 (positive curvature) and a1a2 < 0 (negative curva-
ture), we need to consider the two models

φ(x1, x2) = x2
1 + x2

2 +
∑

α+β≥3

aαβ x
α
1 x

β
2 (3.3)

and

φ(x1, x2) = x2
1 − x2

2 +
∑

α+β≥3

aαβ x
α
1 x

β
2 . (3.4)

Denote by σ the surface measure of Σ. Let ξ ∈ R
3 (|ξ| large) and evaluate the

Fourier transform∫
Σ (local)

eixξσ(dx) =
∫
ei
(
x1ξ1+x2ξ2+φ(x1,x2)ξ3

)
ω(x) dx1 dx2 (3.5)

where ω is some smooth function supported by a (small) neighborhood of (0, 0).
The critical points of the phase function satisfy{

ξ1 + ∂1φ(x)ξ3 = ξ1 + (2x1 +
∑

α+β≥3 αaαβx
α−1
1 xβ2 )ξ3 = 0

ξ2 + ∂2φ(x)ξ3 = ξ2 + (2εx2 +
∑

α+β≥3 βaαβx
α
1x

β−1
1 )ξ3 = 0

(3.6)

where ε = ±1 depending on whether we are in case (3.3) or (3.4).
It follows that in suppω there are no critical points unless

|ξ1|, |ξ2| < c|ξ3| (3.7)

(c a small constant, depending on suppω).
If (3.7) there is a unique critical point

x = x(ξ) =
(
x1

(
ξ1
ξ3
,
ξ2
ξ3

)
, x2

(
ξ1
ξ3
,
ξ2
ξ3

))
(3.8)
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where {
2x1 +

∑
α+β≥3 αaαβx

α−1
1 xβ2 = − ξ1

ξ3

2εx2 +
∑

α+β≥3 βaαβx
α
1x

β−1
2 = − ξ2

ξ3

(3.9)

and |aαβ | < Cα+β .
From the stationary phase formula (see [GS77], Ch. 1)

(3.5) =
2π
|ξ3|e

πi

4
signH(x(ξ)) eiψ(ξ)

| detH
(
x(ξ)

)|1/2 ω
(
x(ξ)

)
+ 0
(

1
|ξ|2
)

(3.10)

where H(x) is the Hessian of φ at x, signH is the signature of H and

ψ(ξ) = x1(ξ)ξ1 + x2(ξ)ξ2 + φ
(
x1(ξ), x2(ξ)

)
ξ3

(3.6)
= −ξ3

{
x1(ξ)∂1φ

(
x(ξ)

)
+ x2(ξ)∂2φ

(
x(ξ)

)− φ(x1(ξ), x2(ξ))
}
. (3.11)

By (3.3), (3.4)

H(x) =

⎡
⎢⎢⎣

2 +
∑

α+β≥3
α≥2

α(α− 1) aαβ xα−2
1 xβ2

∑
α+β≥3
α≥1,β≥1

αβaαβ x
α−1
1 xβ−1

2

∑
α+β≥3
α≥1,β≥1

αβ aαβ x
α−1
1 xβ−1

2 2ε+
∑

α+β≥3
β≥2

β(β − 1) aαβ xα1 x
β−2
2

⎤
⎥⎥⎦

(3.12)

and hence signH = 2 (resp. 0) for positive (resp. negative) curvature.
As will be clear soon, the error term 0(|ξ|−2) will be harmless in our analysis in

the restriction problem for T
3-eigenfunctions. The relevant contribution will be

eiψ(ξ)

|ξ| (3.13)

coming from the main term. It turns out that the decay factor 1
|ξ| is barely insuf-

ficient to ignore the oscillatory factor eiψ(ξ). In order to exploit this factor, a more
careful analysis of the phase function ψ(ξ) is necessary.

Returning to (3.9), (3.11), we obtain by the implicit function theorem
(
recalling

(3.7)
)
. ⎧⎪⎨

⎪⎩
x1(ξ) = − ξ1

2ξ3
+
∑

α+β≥2 bαβ

(
ξ1
ξ3

)α (
ξ2
ξ3

)β
x2(ξ) = −ε ξ22ξ3

+
∑

α+β≥2 cαβ

(
ξ1
ξ3

)α (
ξ2
ξ3

)β
and

ψ(ξ) = −1
4

(
ξ21
ξ3

+ ε
ξ22
ξ3

)
+
∑

α+β≥3

dαβ ξ
α
1 ξ

β
2 ξ

1−α−β
3 (3.14)

(|bα,β |, |cαβ|.|dαβ| < Cα+β).



GAFA RESTRICTION OF TORAL EIGENFUNCTIONS TO HYPERSURFACES 893

Thus ψ(ξ) is homogeneous of degree one and hence ∇ψ(ξ) is radially constant and
D2ψ(λξ) = 1

λD
2ψ(ξ). The self-adjoint matrix D2ψ(ξ), ξ �= 0, has ξ as eigenvector

with eigenvalue 0.
From (3.14)

D2ψ(ξ) =

⎛
⎝− 1

2ξ3
0 0

0 − ε
2ξ3

0
0 0 0

⎞
⎠+ 0

( |ξ1| + |ξ2|
ξ23

)
(3.15)

and by (3.7), we conclude that the other two eigenvalues of D2ψ(ξ) are of size ∼ 1
|ξ|

with same or opposite sign depending on ε = 1,−1.
Hence

D2ψ(ξ) =
1
|ξ|Pξ⊥APξ⊥ (3.16)

where A is a self-adjoint operator (depending on ξ
|ξ|), acting on ξ⊥ and with eigen-

values bounded from above and below (with same sign for ε = 1 and opposite sign
for ε = −1).

4 Spherical Restriction of the Phase Function

Let ψ(ξ) be the phase function obtained in Sect. 3 and

S = S2 = {x ∈ R
3, |x| = 1}.

The domain of definition of ψ is a cone Z = {|ξ1|, |ξ2| < c|ξ3|}, with c > 0 a small
constant, and ψ is real analytic on Z.

Subcones Z ′ = {|ξ1|, |ξ2| < c′|ξ3|} ⊂ Z, c′ < c, will also be denoted by Z. We will
need a normal form analysis of the function ψ(x− y) with x, y restricted to S.

Lemma 4.1. Let p : O
open⊂ R

2 → C be a real analytic parametrization of a cap
C ⊂ S such that C ∩ (ξ + Z̄) is connected for all ξ ∈ C.

Let a, b ∈ O, a �= b such that p(a) − p(b) ∈ Z. There are real analytic coordinate
changes α (resp. β) on a neighborhood of a (resp. b) such that

ψ
(
p
(
a+ α(x)

)− p(b+ β(y)
))

= f(x) + g(y) + x1y1 + x2y2 + h(x, y) (4.1)

with f, g, h real analytic, h(x, y) = 0(|x|2|y|2) and h �= 0.

Proof. (i) Letting η = p(a) − p(b), η̄ = η
|η| , it follows from (3.16) and curvature that

the quadratic form

D2ψ(η) =
1
|η|Pη⊥Aη̄Pη⊥

is non-degenerate on
(
Ta − p(a)

) × (Tb − p(b)
)

where Ta (resp. Tb) is the tangent
space at p(a) ∈ S (resp. p(b) ∈ S), as in Fig. 1.
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........... ...................
.............
.............
.......

Figure 1: Tangent spaces in a cap

Figure 2: A neighborhoood of p(a)

Performing coordinate changes α, β in x, y separately, we can therefore obtain
the form (4.1) with h(x, y) = 0(|x|2|y|2). It remains to show that h does not vanish
identically.

(ii) Assume that h = 0. Then

ψ
(
p
(
a+ α(x)

)− p
(
b+ β(y)

))
= f(x) + g(y) + x1y1 + x2y2 (4.2)

for x, y in a neighborhood of (0, 0) ∈ R
2.

Define fw(v) = ψ(v − w) where w ∈ S is in a neighborhood W of p(b) and
v ∈ S ∩ (w + Z). It follows from (4.2) that there is a neighborhood V of p(a) in S
(Fig. 2) such that

dim[fw|V ;w ∈ W ] ≤ 4. (4.3)

Take δ0 � δ1 � · · · � δ4 and points p(b) = w0, w1, . . . , w4 ∈ S in W satisfying

B(wi+1, δi+1) ⊂ B(wi, δi) ∩ (wi + Z).
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Figure 3: The negative definite case

From (4.3), we may assume fw4 |V a linear combination of fwi
|V (0 ≤ i ≤ 3).

Hence, invoking real analyticity, it follows that fw4 is a linear combination of fwi
(0 ≤

i ≤ 3) on
⋂4
i=0(wi + Z) ∩ S. Since the functions fwi

(0 ≤ i ≤ 3) are smooth on
B(w4, δ4)∩S ⊂ ⋂3

i=0(wi+Z), it follows in particular that fw4 is smooth onB(w4, δ4)∩
(w4 + Z̄) ∩ S. Hence, taking u ∈ B(w4, δ4) ∩ (w4 + Z) ∩ S, it follows that

D2ψ(u− w4) =
1
|ζ|Pζ⊥A ζ

|ζ|
Pζ⊥ , ζ = u− w4

restricted to Tu − u, is uniformly bounded for u ∈ B(w4, δ4) ∩ (w4 + Z) ∩ S.
Thus for ζ as above and θ, ξ ∈ Tu − u, |θ| = 1 = |ξ|,

〈APζ⊥θ, ξ〉 = 0(|ζ|) (4.4)

where A = A ζ

|ζ|
.

We show that this is not the case.
If A is positive definite, take θ = ξ ∈ ζ⊥ ∩ (Tu − u), |θ| = 1. Hence, from (4.4),

1 ∼ 〈Aθ, θ〉 = 0(|u− w4|). (4.5)

Letting u → w4, we obtain a contradiction.
If A is negative definite, proceed as follows.
Fix ζ = u − w4 and let w′

4 vary in B(w3, δ3) ∩ S such that u′ = w′
4 + ζ ∈

B(w3, δ3) ∩ S. Hence w′
4 varies over an arc of size ∼ δ3 (see Fig. 3). Let

θ′ ∈ ζ⊥ ∩ (Tu′ − u′) = ζ⊥ ∩ (Tw′
4
− w′

4), |θ′| = 1.

From (4.4)

〈Aθ′, θ′〉 = 0(|ζ|) (4.6)

where A does not depend on w′
4 and θ′ also varies over an arc of size ∼ δ3. Thus the

left side of (4.6) can be made at least ∼ δ3, independently of |ζ|, a contradiction.
This proves Lemma 4.1. ��
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Lemma 4.2. In the situation of Lemma 4.1, we may choose a, b ∈ O, p(a)−p(b) ∈ Z
such that in (4.1) the function

h(x, y) = x2
1Q11(y) + x1x2Q12(y) + x2

2Q22(y) + 0(|x|3|y|2 + |x|2|y|3) (4.7)

where the Qij(y) are quadratic forms, not all zero.

Proof. Start with (4.1) with h(x, y) = 0(|x|2|y|2), h �= 0. Taking a sufficiently small
δ > 0, it follows from the mean value theorem that on B(0, δ)×B(0, δ), B(0, δ) ⊂ R

2

|∂2
x∂yh| ≤ δ

(
max
B(0,δ)

|∂2
x∂

2
yh|
)
, (4.8)

since ∂2
x∂yh|y=0 = 0.

Similarly for ∂x∂2
yh.

It follows that there are x̄, ȳ ∈ B(0, δ) ∩ R
2 such that

‖(∂2
xθyh)(x̄, ȳ)‖ + ‖(∂x∂2

yh)(x̄, ȳ)‖ < δ‖(∂2
x∂

2
yh)(x̄, ȳ)‖ < 1. (4.9)

Setting x = x̄+ Δx, y = ȳ + Δy in (4.1), we obtain after a linear coordinate change
in Δy

ψ
(
p
(
a+ α(x̄+ Δx)

)− p
(
b+ β(ȳ + Δy)

))
= f̄(Δx) + ḡ(Δy) + (Δx)1(Δy)1 + (Δx)2(Δy)2

+
∑

i,j,k=1,2

cijk(∂xixj
∂yk

h)(x̄, ȳ)(Δx)i(Δx)j(Δy)k (4.10)

+
∑

i,j,k=1,2

cijk(∂xi
∂yjyk

h)(x̄, ȳ)(Δx)i(Δy)j(Δy)k (4.11)

+
∑

i,j,k,�=1,2

cijk�(∂xixj
∂yky�

h)(x̄, ȳ)(Δx)i(Δx)j(Δy)h(Δy)� (4.12)

+0(|Δx|3|Δy| + |Δx| |Δy|3) (4.13)
+0(|Δx|3|Δy|2 + |Δx|2|Δy|3)

where (4.10)–(4.12) satisfy (4.9).
We eliminate the 0(|Δx|2|Δy|)-terms in (4.10), (4.13) by a coordinate change in

Δx and then the 0(|Δx| |Δy|2)-terms by a coordinate change in Δy. Since the new
quartic terms introduced by these coordinate changes (in fact only the first) have
coefficients at most

0
(‖(∂2

x∂yh)(x̄, ȳ)‖.‖(∂x∂2
yh)(x̄, ȳ)‖

)
< δ‖∂2

x∂
2
yh(x̄, ȳ)‖

by (4.9), the resulting expression will clearly still have a nonvanishing bi-quadratic
term. This proves Lemma 4.2. ��
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Denoting Fa,b(x, y) = ψ
(
p
(
a+α(x)

)−p(b+β(y)
))

with h(x, y) in (4.1) satisfying
Lemma 4.2, it follows that the Wronskian

max
i,j,k,�=1,2

Wi,j,k,�(Fa,b)(0, 0)≡ max
i,j,k,�=1,2

∣∣∣∣∣∣
∂x1∂y1F ∂x1∂y2F ∂x1∂yky�

F
∂x2∂y1F ∂x2∂y2F ∂x2∂yky�

F
∂xixj

∂y1F ∂xixj
∂y2F ∂xixj

∂yky�
F

∣∣∣∣∣∣ (0, 0) �= 0.

(4.14)

Note that property (4.14) does not depend on the parametrization. Thus

maxWijk�(a, b) = maxWi,j,k,�

(
ψ
(
p(x) − p(y)

))
(a, b) �= 0. (4.15)

Invoking real analyticity, we obtain

Lemma 4.3. With previous notations, the set{
(x, y) ∈ O ×O; p(x) − p(y) ∈ Z; max

i,j,k,�
Wijk�(x, y) = 0

}

is at most a 3-dim submanifold.
Also, for δ1 > δ > 0 small enough and considering a partition of O in δ-boxes

Qα, we have

#Wδ,δ1 = #
{

(α, β);
(
p(Qα)−p(Qβ)

)∩Z �=φ and max
i,j,k,�

min
Qα×Qβ

|Wijk�(x, y)|<δ1
}

< δ−4δc1
1

(4.16)

(for some constant c1 independent of δ1).

Fix α �= β such that p(Qα) − p(Qβ) ⊂ Z and (α, β) not in the exceptional set
W = Wδ,δ1 . Let Qα = aα + Uα, Qβ = aβ + Uβ where Qα, Qβ ⊂ O and Uα, Uβ are
δ-neighborhoods of (0, 0).

Appropriate coordinate changes in x, y permit to bring ψ
(
p(aα +x) − p(aβ + y)

)
in the form

f(x) + g(y) + x1y1 + x2y2 + x2
1Q11(y) + x1x2Q12(y) + x2

2Q22(y)
+ O(|x|2|y|2(|x| + |y|)) (4.17)

with

max
i,j=1,2

‖Qij‖ > δ1. (4.18)

Next, we show
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Lemma 4.4. Further linear coordinate changes in x and y provide an expression of
the form

f(x) + g(y) + x1y1 + x2y2 + qx2
1y

2
1

+O
(
(|x2| |x| + |y2| |y|)(|x| + |y|)2 + |x|2|y|2(|x| + |y|)) (4.19)

with |q| � δ1.

Proof. With a a parameter to be specified, make a linear transformation

x �→ (x1, x2 + ax1) y → (y1 − ay2, y2)

preserving the quadratic part of (4.17). We obtain

f1(x) +g1(y) + x1y1 + x2y2 + x2
1Q11(y1 − ay2, y2)

+x1(x2 + ax1)Q12(y1 − ay2, y2) + (x2 + ax1)2Q22(y1 − ay2, y2)
+O
(|x|2|y|2(|x| + |y|))

with bi-quadratic part

x2
1[Q

′
11(y) + aQ′

12(y) + a2Q′
22(y)] + 0(|x2| |x| |y|2) (4.20)

where

Q′
ij(y) = Qij(y1 − ay2, y2)

satisfies, by (4.18)

max
i,j

‖Q′
ij‖ > δ1. (4.21)

Clearly there is some a = O(1) such that

‖Q′‖ = ‖Q′
11 + aQ′

12 + a2Q′
22‖ � δ1. (4.22)

Thus after this first linear transformation, we get

f1(x) + g1(y) + x1y1 + x2y2 + x2
1Q

′(y1, y2)

+ O
(|x2| |x| |y|2 + |x|2|y|2(|x| + |y|)) (4.23)

and

Q′(y1, y2) = q11y
2
1 + q12y1y2 + q22y

2
2

satisfying

max
i,j

|qij | � δ1. (4.24)

Next, make a second transformation

x �→ (x1 − bx2, x2) y �→ (y1, y2 + by1)
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with b = O(1), converting (4.23) to

f2(x) + g2(y) + x1y1 + x2y2

+ (x1 − bx2)2[q11y2
1 + q12y1(y2 + by1) + q22(y2 + by1)2]

+ O
(|x2| |x| |y|2 + |x|2|y|2(|x| + |y|))

= f2(x) + g2(y) + x1y1 + x2y2 + x2
1y

2
1(q11 + bq12 + b2q22)

+ O
(|x2| |x| |y|2 + |y2| |y| |x|2 + |x|2|y|2(|x| + |y|)). (4.25)

By (4.24), we can choose b such that

|q| = |q11 + bq12 + b2q22| � δ1.

This proves Lemma 4.4. ��

5 Estimation of Certain Oscillatory Sums

Let E = R2 ∈ Z+ be the eigenvalue.
In the preceding Sect. 3, we take δ = Rε with ε > 0 a small constant and δ1 =

√
δ.

Our purpose in this section is to establish nontrivial bounds on sums of the form∑
x∈X,y∈Y

eiR[ψ(p(aα+x)−p(aβ+y))] (5.1)

where X ⊂ Uα, Y ⊂ Uβ are discrete sets of 1√
R

-separated points (recall that Uα, Uβ
are δ-neighborhoods of (0, 0)). The setsX,Y will correspond to diffeomorphic images
of subsets of E = RS2 ∩ Z

3 as we will explain in Sect. 7.
Our aim is to prove an estimate

|(5.1)| < R2−κ (5.2)

for some κ > 0 (independent of R).
The bound (5.2) will be derived from the following 1-dimensional inequality.

Lemma 5.1. Assume S, T ⊂ [0, R− 1
5 ] arbitrary discrete sets of 1√

R
-separated points

and 0 < |q| < 0(1). Then∣∣∣ ∑
s∈S,t∈T

eiR(st+qs2t2)
∣∣∣ < R

3
5
−κ1 |q|−1 (5.3)

for some constant κ1 > 0.

Lemma 5.1 will be proven in Sect. 6. In this section, we derive (5.2) from (5.3).
According to Lemma 4.4, we may assume for x ∈ Uα, y ∈ Uβ

ψ
(
p(aα + x) − p(aβ + y)

)
= f(x) + g(y) + x1y1 + x2y2 + qx2

1y
2
1

+O
(
(|x2| |x| + |y2| |y|)(|x| + |y|)2)+O

(|x|2|y|2(|x| + |y|)) (5.4)

where |q| > δ.
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In order to reduce the problem to a 1-dimensional setting, a further restriction
of the range of the x, y-variables will be performed.

Let x̄ ∈ Uα, ȳ ∈ Uβ and x = x̄ + x′, y = ȳ + y′ with x′, y′ suitably restricted.
Write

ψ
(
p(aα + x̄+ x′) − p(aβ + ȳ + y′)

)
= ψ
(
p(aα + x′) − p(aβ + y′)

)
+

2∑
i=1

x̄iAi(x̄, ȳ, x′, y′) +
2∑
j=1

ȳjBj(x̄, ȳ, x′, y′)

5.4= f(x′) + g(y′) + x′.y′

+q(x′
1)

2(y′
1)

2 +O
(
(|x′

2| |x′| + |y′
2| |y′|)(|x′|2 + |y′|2|) + |x′|2|y′|2(|x′| + |y′|))

+
2∑
i=1

x̄iAi(x̄, ȳ, x′, y′) +
2∑
j=1

ȳjBj(x̄, ȳ, x′, y′). (5.5)

Perform coordinate changes in x′, y′ separately (as described in Lemma 4.1){
x′ = ζ

(1)
x̄,ȳ(x′′)

y′ = ζ
(2)
x̄,ȳ(y′′)

(5.6)

in order to bring (5.5) in the form

ψ
(
p(aα+x̄+ζ(1)

x̄,ȳ(x
′′)
)− p(aβ+ȳ+ζ(2)

x̄,ȳ(y
′′)
)

= f1(x′′)+g1(y′′)+x′′.y′′+h(x′′, y′′)
(5.7)

where

h(x′′, y′′) = O(|x′′|2|y′′|2).
Clearly ζ(1)

x̄,ȳ, ζ
(2)
x̄,ȳ depend real-analytically on x̄, ȳ.

Also, since |x̄|, |ȳ| < δ⎧⎨
⎩
ζ
(1)
x̄,ȳ(x′′) = x′′ +O

(
(|x̄| + |ȳ|)|x′′|)

ζ
(2)
x̄,ȳ(y′′) = y′′ +O

(
(|x̄| + |ȳ|)|y′′|) (5.8)

are δ-perturbations of identity.
Returning to (5.5), it follows that

h(x′′, y′′) = q(x′′
1)

2(y′′
1)2+O

(
(|x′′

2| |x′′|+|y′′
2 | |y′′|)(|x′′|+|y′′|)2+|x′′|2|y′′|2(|x′′|+|y′′|))

+O
(
(|x̄| + |ȳ|)|x′′|2|y′′|2)

= q′′(x′′
1)

2(y′′
1)2 +O

(
(|x′′

2| |x′′| + |y′′
2 | |y′′|)(|x′′|2 + |y′′|2))

+O
(|x′′|2|y′′|2(|x′′| + |y′′|)) (5.9)

where q′′ = q +O(δ), hence |q′′| > 1
2 |q| � δ1.
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Thus

(5.7) = f1(x′′) + g1(y′′) + x′′
1y

′′
1 + x′′

2y
′′
2 + q′′(x′′

1)
2(y′′

1)2

+O
(
(|x′′

2| |x′′| + |y′′
2 | |y′′|)(|x′′|2 + |y′′|2)

+O
(
(|x′′| + |y′′|)5). (5.10)

Fix a small parameter τ > 0 and denote

B = [0, R− 1
5
−τ ] × [0, R− 1

2
−τ ]. (5.11)

If we restrict x′′ ∈ B, y′′ ∈ B, clearly

(5.10) = f1(x′′) + g1(y′′) + x′′
1y

′′
1 + q′′(x′′

1)
2(y′′

1)2

+O(R−1−2τ +R− 3
5
− 1

2 +R−1−5τ ). (5.12)

Hence, returning to (5.1)∣∣∣∣∣∣∣∣∣∣∣∣
∑

x′′,y′′∈B
ζ
(1)
x̄,ȳ(x′′)∈X−x̄
ζ
(2)
x̄,ȳ(y′′)∈Y−ȳ

eRψ
(
p(aα+x̄+ζ

(1)
x̄ȳ (x′′))−p(aβ+ȳ+ζ

(2)
x̄ȳ (y′′))

)
∣∣∣∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣∣
∑

x′′,y′′∈B
ζ
(1)
x̄,ȳ(x′′)∈X−x̄
ζ
(2)
x̄,ȳ(y′′)∈Y−ȳ

c(x′′)d(y′′)ciR[x′′
1 y

′′
1 +q′′((x′′

1 )2(y′′
1 )2)]

∣∣∣∣∣∣∣∣∣∣∣∣
(5.13)

+O
(
R−2τ |X ∩ [ζ(1)

x̄,ȳ(B) + x̄]| · |Y ∩ [ζ(2)
x̄,ȳ(B) + ȳ]|) (5.14)

with |c(x′′)| = |d(y′′)| = 1.
Recall that X,Y consist of 1√

R
-separated points. Hence also the elements of

(ζ(1)
x̄,ȳ)−1(X − x̄) and (ζ(2)

x̄,ȳ)−1(Y − ȳ) are ∼ 1√
R

-separated. From the definition (5.11)
of B, it follows that

S = π1[B ∩ (ζ(1)
x̄,ȳ)−1(X − x̄)]

T = π1[B ∩ (ζ(2)
x̄,ȳ)−1(Y − ȳ)]

are ∼ 1√
R

separated.
Assuming a general estimate (5.3) (κ1 > 0 some fixed constant) at our disposal,

we can therefore conclude that

|(5.13)| < R−κ1+
3
5

1
|q′′| < R− 1

2
κ1+

3
5 . (5.15)
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In conclusion, we obtain from (5.13)–(5.15)∣∣∣∣∣∣∣∣∣∣
∑

x∈X∩(x̄+ζ
(1)
x̄,ȳ(B))

y∈Y ∩(ȳ+ζ
(2)
x̄,ȳ(B))

eiRψ(p(aα+x)−p(aβ+y))

∣∣∣∣∣∣∣∣∣∣
� R−2τ |X ∩ (x̄+ ζ

(1)
x̄ȳ (B)

)|.|Y ∩ (ȳ + ζ
(2)
x̄ȳ (B)

)| +R
3
5
− 1

2
κ1 . (5.16)

Recall that x̄ ∈ Uα, ȳ ∈ Uβ were arbitrarily chosen.
Integration of (5.16) in x̄ ∈ Uα, ȳ ∈ Uβ gives

∑
x∈X,y∈Y

eiRψ(p(aα+x)−p(aβ+y))

⎧⎪⎨
⎪⎩
∫∫

Uα×Uβ

[1x̄+ζ(1)x̄ȳ (B)(x).1ȳ+ζ(2)x̄ȳ (B)(y)]dx̄dȳ

⎫⎪⎬
⎪⎭

� R−2τ
∑

x∈X,y∈Y

⎧⎪⎨
⎪⎩
∫∫

Uα×Uβ

[1x̄+ζ(1)x̄ȳ (B)(x)1ȳ+ζ(2)x̄ȳ (B)(y)]dx̄dȳ

⎫⎪⎬
⎪⎭+R

3
5
− 1

2
κ1 . (5.17)

Next, we analyze the expression { }.
For fixed x, y, consider the equations⎧⎨

⎩
x = x̄+ ζ

(1)
x̄,ȳ(x′′)

y = ȳ + ζ
(2)
x̄,ȳ(y′′)

(5.18)

with x′′, y′′ ∈ B. Note that by (5.8)

|∂x̄ζ(1)
x̄ȳ (x′′)| + |∂ȳ∂(1)

x̄ȳ (x′′)| + |∂x̄ζ(2)
x̄ȳ (y′′)| + |∂ȳζ(2)

x̄ȳ (y′′)| < O(|x′′| + |y′′|) < R− 1
5 .

Hence, by the implicit function theorem, (5.18) may be rewritten as

(x̄, ȳ) = Ωx,y(x′′, y′′) (5.19)

where Ωx,y is a diffeomorphism from B × B to Ωx,y(B × B) ⊂ Uα × Uβ (recalling
again (5.8)).

We have ∫∫
Uα×Uβ

[1x̄+ζ(1)x̄ȳ (B)(x)1ȳ+ζ(2)x̄ȳ (B)(y)]dx̄dȳ

=
∫∫

Ωx,y(B×B)

dx̄dȳ

=
∫∫
B×B

∣∣∣∣∣∂(Ω(1)
xy ,Ω

(2)
xy )

∂(x′′, y′′)

∣∣∣∣∣dx′′dy′′. (5.20)
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It follows from (5.18) and the preceding that

∂x̄

∂x′′ = −∂ζ
(1)
x̄ȳ

∂x′′ +O
(
R− 1

5

(∣∣∣ ∂x̄
∂x′′
∣∣∣+ ∣∣∣ ∂ȳ

∂x̄′′
∣∣∣))

and hence
∂x̄

∂x′′ = −1 +O(δ) +O(R− 1
5 ). (5.21)

Similarly

∂x̄

∂y′′ = O(R− 1
5 ) (5.22)

∂ȳ

∂x′′ = O(R− 1
5 ) (5.23)

∂ȳ

∂y′′ = −1 +O(δ) +O(R− 1
5 ). (5.24)

From (5.21)–(5.24)

DΩx,y = −1 +O(δ)

implying

∂(Ω(i)
xy ,Ω

(2)
xy )

∂(x′′, y′′)
= 1 +O(δ)

and

(5.20) = ω(x, y)|B|2 (5.25)

where

ω(x, y) = 1 +O(δ) (5.26)

is a smooth function of x, y.
Substituting (5.20), (5.25) in (5.17) gives∣∣∣∣∣

∑
x∈X,y∈Y

eiRψ(p(aα+x)−p(aβ+y)) ω(x, y)

∣∣∣∣∣ � R−2τ |X| · |Y | +R2− 1
2
κ1+4τ (5.27)

recalling (5.11).
It remains to remove the function ω(x, y) in (5.27).
First observe that (5.27) formally implies that∣∣∣∣∣
∑

x∈X,y∈Y
eiRψ(p(aα+x)−p(aβ+y))ω(x, y)u(x)v(y)

∣∣∣∣∣ < R−2τ |X| · |Y | +R2− 1
2
κ1+4τ

(5.28)

whenever u, v are functions on R
2 satisfying |u| ≤ 1, |v| ≤ 1.
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Since ω is a smooth function of (x, y) satisfying (5.26), it follows that 1
ω ∈

L∞⊗̂L∞, thus 1
ω = Σλ�(u� ⊗ v�) where ‖u�‖∞, ‖v�‖∞ � 1 and Σ|λ�| < C. Hence, by

convexity, (5.28) implies∣∣∣∣∣
∑

x∈X,y∈Y
eiRψ(p(aα+x)−p(aβ+y))

∣∣∣∣∣ � R−2τ |X| · |Y | +R2− 1
3
κ1 (5.29)

taking τ > 0 small enough.
This gives an inequality of the type (5.2). The sets X ⊂ Uα, Y ⊂ Uβ are arbitrary

sets of 1√
R

-separated points.

Returning to (4.16), we proved that if X,Y are 1√
R

-separated points in O, then∣∣∣∣∣∣∣∣
∑

x∈XUQα

y∈Y ∩Qβ

eiRψ(p(x)−p(y))

∣∣∣∣∣∣∣∣
< R−2τ |X ∩Qα| |Y ∩Qβ | +R2− 1

3
κ1 (5.30)

provided (α, β) �∈ W = Wδ,δ1 and p(Qα) − p(Qβ) ⊂ Z. Here τ, κ1 > 0 are constants
and δ = δ21 = R−ε, ε > 0 sufficiently small.

Summation of (5.30) over α, β gives

∑
p(Qα)−p(Qβ)⊂Z

(α,β) �∈W

∣∣∣∣∣∣∣∣
∑

x∈X∩Qα

y∈Y ∩Qβ

eiRψ(p(x)−p(y))

∣∣∣∣∣∣∣∣
� R2−2τ + δ−4R2− 1

3
κ1 < R2−κ2 . (5.31)

Recalling (4.16), it follows that∣∣∣∣∣∣∣∣
∑

x∈X,y∈Y
p(x)−p(y)∈Z

eiRψ(p(x)−p(y))

∣∣∣∣∣∣∣∣
< R2−κ2 + δ−4+ 1

2
c1 max |X ∩Bδ| max |Y ∩Bδ|

< R2−κ2 + δ
1
2
c1R2

< R2−κ3 (5.32)

since the points in X,Y are 1√
R

-separated.

Equivalently, considering sets X ,Y ⊂ RS2 consisting of
√
R-separated points

and such that X ∪ Y is contained in a cap of size cR (c > 0 a constant depending
on Σ) we have ∣∣∣∣∣

∑
x∈X ,y∈Y,x−y∈Z

eiψ(x−y)
∣∣∣∣∣ < R2−κ3 . (5.33)

Thus (conditional to Lemma 5.1) we proved the following
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Lemma 5.2. Let X ,Y ⊂ RS2 consist of
√
R-separated points. Then

∣∣∣∣∣∣∣∣
∑

x∈X ,y∈Y
x−y∈Z,|x−y|<cR

eiψ(x−y)

∣∣∣∣∣∣∣∣
< R2−γ (5.34)

for some c > 0, γ > 0 depending on ψ (hence on Σ).

6 An Exponential Sum Estimate

We prove the key inequality Lemma 5.1.
Let R be large enough, 0 < |q| < O(1) and S, T ⊂ [0, R− 1

5 ] arbitrary discrete sets
of 1√

R
-separated points. Denoting

S =
∑

s∈S,t∈T
eiR(st+qs2t2) (6.1)

application of the Cauchy–Schwartz inequality twice gives

|S|4 ≤ |S|2|T |2

∣∣∣∣∣∣∣∣
∑
s,s1∈S
t,t1∈T

eiR((s−s1)(t−t1)+q(s2−s21)(t2−t21)

∣∣∣∣∣∣∣∣
= |S|2|T |2

∣∣∣∣∣
∑
z,w

ei[R
3/5z1w1+qR1/5z2w2]μ(z)ν(w)

∣∣∣∣∣ (6.2)

where z = (z1, z2), w = (w1, w2) and μ, ν are discrete measures on [−1, 1]2 defined by

μ(z) = #

{
(s, s1) ∈ S × S

∣∣∣ s− s1 = R− 1
5 z1

s2 − s21 = R− 2
5 z2

}
(6.3)

and similarly for ν. Thus

∑
μ(z),

∑
ν(w) ≤ R3/5. (6.4)

Fix 0 < θ < 1
10 . Since S is 1√

R
-separated

∑
|z1|<R−θ

μ(z) < |S|R 3
10

−θ � R3/5−θ (6.5)
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and similarly for ν. Hence in (6.2),∣∣∣∣∣
∑
z,w

ei[R
3/5z1w1+qR1/5z2w2]μ(z)ν(w)

∣∣∣∣∣

<

∣∣∣∣∣∣∣∣
∑
z,w

|z1|,|w1|>R−θ

ei[R
3/5z1w1+qR1/5z2w2]μ(z)ν(w)

∣∣∣∣∣∣∣∣
+O(R

6
5
−θ). (6.6)

In order to bound the RHS of (6.6), we apply the following general bilinear estimate.

Lemma 6.1.∣∣∣∣∣
∑
z,w

ei(R1z1w1+R2z2w2)μ(z)ν(w)

∣∣∣∣∣ � (R1R2)
1
2

(∑
μ(z)

) 1
2
(∑

ν(w)
) 1

2

·
[
max
ξ1,ξ2

μ

(
B

(
ξ1,

1
R1

)
×B

(
ξ2,

1
R2

))] 1
2

·
[
max
ξ1,ξ2

ν

(
B

(
ξ1,

1
R1

)
×B

(
ξ2,

1
R2

))] 1
2

.

Proof. Denoting Pε an approximate identity on R, the left side equals∣∣∣∣∣
∑
w

μ̂(R1w1, R2w2)ν(w)

∣∣∣∣∣ �
∑
w

∣∣∣∣(μ ∗ (P 1
R1

⊗ P 1
R2

)
)∧

(R1w1, R2w2)
∣∣∣∣ ν(w)

� R1R2

∫∫ ∣∣∣(μ ∗ (P 1
R1

⊗ P 1
R2

)
)∧

(R1ξ1, R2ξ2)
∣∣∣ ν (B(ξ1, 1

R1

)
×B

(
ξ2,

1
R2

))
dξ1dξ2

≤ (R1R2)
1
2 ‖μ ∗ (P 1

R1
⊗ P 1

R2
)‖2.

{∫∫ [
ν

(
B

(
ξ1,

1
R1

)
×B

(
ξ2,

1
R2

))]2
dξ1dξ2

}1/2

� (R1R2)− 1
2 ‖μ ∗ (P 1

R1
⊗ P 1

R2
)‖2‖ν ∗ (P 1

R1
⊗ P 1

R2
)‖2 (6.7)

where ‖ ‖2 refers to L2([−1, 1]2).
Next

‖μ ∗ (P 1
R1

× P 1
R2

)‖2 ≤ ‖μ ∗
(
P 1

R1
× P 1

R2

)
‖ 1

2
1 ‖μ ∗

(
P 1

R1
× P 1

R2

)
‖ 1

2∞

∼
[∑

μ(z)
] 1

2
(R1R2)

1
2

[
max

ξ
μ

(
B

(
ξ1,

1
R1

)
×B

(
ξ2,

1
R2

))] 1
2

(6.8)

and similarly for ν.
Substitution of (6.8) in (6.7) proves the Lemma. ��
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Now apply Lemma 6.1 to evaluate (6.6). Thus R1 = R3/5, R2 = qR1/5.
It remains to bound for ξ = (ξ1, ξ2) ∈ [−1, 1]2, |ξ1| > R−θ, the quantity

μ

(
B

(
ξ1,

1
R1

)
×B

(
ξ2,

1
R2

))

= #
{

(s, s1) ∈ S × S; |R− 1
5 ξ1−(s− s1)|<R−4/5 and |R− 2

5 ξ2−(s2 − s21)|<
1
q
R−3/5

}
.

(6.9)

From the equations, one gets

∣∣∣R− 1
5
ξ2
ξ1

− (s+ s1)
∣∣∣ < 1

q
R− 2

5
+θ +R− 3

5
+θ <

2
q
R− 2

5
+θ

and ∣∣∣R− 1
5

(
ξ1 +

ξ2
ξ1

)
− 2s

∣∣∣ < 3
q
R− 2

5
+θ. (6.10)

Since the elements of S are 1√
R

-separated, (6.10) restricts s to at most c
qR

1
10

+θ values.
Hence

|(6.9)| � 1
q
R

1
10

+θ. (6.11)

From Lemma 6.1, recalling (6.4) and (6.11), we obtain

|(6.6)| � (qR4/5)
1
2R3/5 1

q
R

1
10

+θ � 1√
q
R

11
10

+θ. (6.12)

Hence

|(6.2)| � 1√
q
R

11
10

+θ +R
6
5
−θ

and

|S|4 � R6/5

(
1√
q
R

11
10

+θ +R
6
5
−θ
)
.

An appropriate choice of θ gives

|S| < R
47
80 q− 1

4 . (6.13)

This proves Lemma 5.1 with κ1 = 1
80 . ��
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7 Mean Equidistribution Property of Lattice Points

Let E = Z
3 ∩RS2, R =

√
E. Recall that

|E| � R1+ε for all ε > 0. (7.1)

In order to apply Lemma 5.2 with X ,Y ⊂ E , we recall Lemma 1.5, which states
that

Lemma 7.1. Let {Cα} be a partition of RS2 in cells of size
√
R. Then∑

α

|Cα ∩ E|2 � R1+ε for all ε > 0. (7.2)

Thus (7.2) express the desired separation property in some averaged sense. To
obtain sets that are

√
R-separated, proceed as follows. Fix ε′ > 0 and let

E ′ =
⋃

|Cα∩E|>Rε′
(E ∩ Cα).

It follows from (7.2) that

|E ′| < R−ε′∑ |E ∩ Cα|2 � R1+ε−ε′
< R1− ε′

2 . (7.3)

Also

E\E ′ =
⋃

s<Rε′
Xs (7.4)

with each set X consisting of
√
R-separated points.

From (5.34) ∣∣∣∣∣∣∣∣
∑

x∈Xs,y∈Xt

x−y∈Z,|x−y|
cR

eiψ(x−y)

∣∣∣∣∣∣∣∣
< R2−γ (7.5)

for some γ > 0.
Therefore, from (7.1), (7.3)∣∣∣∣∣∣∣∣

∑
x∈E1,y∈E2

x−y∈Z,|x−y|<cR

eiψ(x−y)

∣∣∣∣∣∣∣∣
� R2−γ+2ε′

+ 2|E ′| |E| < R2−γ+2ε′
+R2+ε− ε′

2 (7.6)

if E1, E2 ⊂ E .
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Hence

Lemma 7.2. There is a constant γ1 > 0 (independent of R) such that∣∣∣∣∣∣∣∣
∑

x∈E1,y∈E2
x−y∈Z,|x−y|<cR

eiψ(x−y)

∣∣∣∣∣∣∣∣
< R2−γ1 (7.7)

whenever E1, E2 ⊂ E = (RS2 ∩ Z
3).

This is our main estimate to handle ‘large distances’ |x− y| > R1−ε.

8 Restriction Upper Bound

Theorem 8.1. Let Σ ⊂ T
3 be a real-analytic 2-dim submanifold with non-vanish-

ing curvature and let σ be its surface measure. There is a constant KΣ > 0 such
that ∫

Σ

|ϕ|2dσ ≤ KΣ‖ϕ‖2
2 (8.1)

for all eigenfunctions ϕ on T
3.

Let

ϕ =
∑
n∈E

ane
ix.n with

∑
|an|2 = 1 (8.2)

and

E = {n ∈ Z
3; |n|2 = E = R2}.

Then ∫
Σ

|ϕ|2dσ =
∑
m,n∈E

amān

∫
Σ

ei(m−n).xσ(dx)

= ||ϕ||22area(Σ) +
∑
k≥0

∑
m,n∈E

2k≤|m−n|<2k+1

amān

∫
Σ

ei(m−n).xσ(dx). (8.3)

Considering local coordinate charts, we can assume Σ is parametrized as in (3.1).
From (3.10), if m �= n then∫

Σ

ei(m−n).xdσ =
1

|m− n|η
(
m− n

|m− n|
)
eiψ(m−n) +O

(
1

|m− n|2
)

(8.4)

with η a smooth function on S2.
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First we bound the contribution of the error term in (8.4) by writing

∑
m,n∈E,2k≤|m−n|<2k+1

|am| |an| 1
|m− n|2 � 4−k∑

α

( ∑
m∈E∩Cα

|am|
)2

≤ 4−k(max
α

|E ∩ Cα|) ∑
α

( ∑
m∈E∩Cα

|am|2
)

� 4−k max
α

|E ∩ Cα| (8.5)

where {Cα} is a partition of RS2 in cells of size ∼ 2k. Thus we need to bound
|E ∩ Cr|, where Cr ⊂ RS2 is a cap of size r.

If r < cR1/4, a Jarnik type theorem implies that E ∩Cr lies in a 2-dim affine plane
H. Projection of H ∩ RS2 on one of the coordinate planes xy, yz, zx gives a non-
degenerate ellipse of size ∼ r. Another application of the classical Jarnik theorem in
the plane shows that certainly

|E ∩ Cr| < Cr2/3. (8.6)

For r arbitrary, one has the (easy) linear bound (see Lemma 2.2)

|E ∩ Cr| � Rε(1 + r). (8.7)

From (8.6), (8.7) we get

|E ∩ Cr| � r1+ε. (8.8)

Substituting (8.8) in (8.5) gives 2−k(1−ε), which is summable in k.
Consider next the contribution of the main term in (8.4). We make two separate

estimates. The first treats the case 2k < R1−ε0 (ε0 > 0 some small constant) and the
second 2k > R1−ε0 . The following improvement of the lattice point estimates (8.6),
(8.7), which will be proven in Sect. 2 (Lemma 2.3), is crucial to our analysis: For
0 < η < 1/16

|E ∩ Cr| � Rε
(
1 + r

( r
R

)η)
. (8.9)

The case 2k < R1−ε0 Ignoring again the phase function, and arguing as in (8.5)
gives ∑

m,n∈E,2k≤|m−n|<2k+1

|am| |an| 1
|m− n| � 2−k max

α
|E ∩ Cα|

<

⎧⎨
⎩
C2− 1

3
k if 2k < cR1/4

Rε
[
2−k +

(
2k

R

)η]
if cR1/4 < 2k < R1−ε0

(8.10)

invoking (8.6), (8.9). These bounds are again conclusive.
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The case R1−ε0 < 2k < R This requires a more subtle argument involving the
oscillatory factor eiψ(n−n) in (8.4).

Let b be a smooth (radial) function on R
3 satisfying{

b(x) = 0 if |x| < 1
2

b(x) = 1 if |x| > 1

and estimate ∑
m,n∈E

amān b

(
m− n

R1−ε0

)
1

|m− n|η
(
m− n

|m− n|
)
eiψ(m−n). (8.11)

Decompose E = E�
∐ Es, where

E� = {m ∈ E ; |am| > R− 1
2
+2ε0}.

Since
∑

n |an|2 = 1, we have |E�| ≤ R1−4ε0 .
Then we estimate

|(8.11)| �
∑

(m,n)∈(E×E)\(Es×Es)

|am| |an| 1
R1−ε0 (8.12)

+

∣∣∣∣∣∣
∑

m,n∈Es

amān b

(
m− n

R1−ε0

)
1

|m− n|η
(
m− n

|m− n|
)
eiψ(m−n)

∣∣∣∣∣∣ . (8.13)

By Cauchy–Schwarz, (8.12) is bounded by

1
R1−ε0 |E| 1

2 |E�|
1
2 � 1

R1−ε0R
1
2
+o(1)R

1
2
−2ε0 < R− ε0

2 .

The term (8.13) is bounded using Lemma 7.2 and a partition of unity. This gives an
estimate of the form

RCε0
1

R1−ε0
1

R1−4ε0
R2−γ1 < R− 1

2
γ1

if ε0 is chosen sufficiently small.
Hence, we have proven Theorem 8.1. ��

9 Restriction Lower Bounds

We prove

Theorem 9.1. Given Σ as in Theorem 8.1, there is E0 ∈ Z+ and a constant kΣ > 0
such that ∫

Σ

|ϕ|2dσ ≥ kΣ||ϕ||22 (9.1)

whenever ϕ is an eigenfunction with eigenvalue E > E0.
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Let ϕ =
∑

n∈E ane
in.x with E = RS2 ∩ Z

3, R =
√
E and Σ|an|2 = 1.

Write ∫
Σ

|ϕ|2dσ =
∑
m,n∈E

|m−n|<R 1
5

amān

∫
Σ

ei(m−n)xσ(dx) (9.2)

+
∑

|m−n|>R 1
5

· · · (9.3)

= (9.2) + (9.3).

From the upper-bound analysis in Sect. 8, we have

|(9.3)| < R−δ (9.4)

for some δ > 0.
Next, we analyze (9.2).
Introduce a graph G on E defined by

G = {(m,n) ∈ E , |m− n| < R1/5}.
Let {Eα} be the connected components of G.

Lemma 9.2. For each α, the set Eα is contained in an affine plane.

Proof. We may obviously assume #Eα ≥ 3 and hence there is a subset F0 ⊂
Eα,#F0 = 3 and diamF0 < 2R1/5.

Let H = 〈F0〉 be the affine plane spanned by F0.
Write

Eα =
⋃
j

Fj

where

Fj+1 = {m ∈ E ; dist(m,Fj) < R1/5}.
We show inductively that Fj ⊂ H for each j.
For j < R

1
100 , dist (Fj ,F0) < jR1/5 � R1/4 and Jarnik’s theorem implies that

Fj is coplanar. Hence Fj ⊂ H. Next, assume j0 ≥ R
1

100 ,Fj0 ⊂ H and Fj0+1 �= Fj0 .
If xj0+1 ∈ Fj0+1, there are clearly x ∈ Fj0 and y, z ∈ Fj0 satisfying

|xj0+1 − x| < R
1
5

and

x, y, z are distinct and diam {x, y, z} � R1/5.

(we use here that #F0 = 3).
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Since diam {x, y, z, xj0+1} � R
1
5 , it follows again from Jarnik that x, y, z, xj0+1

are coplanar and hence

xj0+1 ∈ 〈x, y, z〉 = H.

This proves Lemma 9.2. ��
Returning to (9.2), it follows from definition of G that

(9.2) =
∑
α

∑
m,n∈Eα

|m−n|<R1/5

amān

∫
Σ

ei(m−n)xdσ

=
∑
α

∫
Σ

∣∣∣ ∑
m∈Eα

am e
imx
∣∣∣2dσ

+0

⎛
⎜⎜⎝∑

α

∑
m,n∈Eα

|m−n|≥R1/5

|am| |an|
|m− n|

⎞
⎟⎟⎠ . (9.5)

The last term may be bounded by R− 1
31 , as seen as follows. Estimate by

(9.5) <
∑

2k>R1/5

2−k
(

max
C

|{(m,n) ∈ C × C;m,n ∈ Eα for some α}|
) 1

2

where the max is taken over all 2k-caps C. For C an r-cap, (8.6), (8.8) imply that

|{· · · }| ≤ |C ∩ E|.max
α

|C ∩ Eα| � r1+2/3+ε

hence the claim.
To prove Theorem 9.1, it will therefore suffice to show the following:

Lemma 9.3. Let ϕ =
∑

m∈F ame
im.x,

∑
m∈F |am|2 = 1, where F ⊂ E consists of

coplanar points. Then ∫
Σ

|ϕ|2dσ > k (9.6)

where k > 0 is independent of E.

Proof. Let H = 〈F〉 be the plane containing F and π the orthogonal projection on
H0=plane parallel to H through 0. Clearly, fixing any element m0 ∈ F , we have∫

Σ

∣∣∣∣∣
∑
m∈F

ame
imx

∣∣∣∣∣
2

dσ =
∫
Σ

∣∣∣∣∣
∑
m∈F

ame
i(m−m0).x

∣∣∣∣∣
2

dσ

=
∫
Σ

∣∣∣∣∣
∑
m∈F

ame
i(m−m0).π(x)

∣∣∣∣∣
2

dσ. (9.7)
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Let π[σ] be the image measure of σ under the map π
∣∣
Σ

: Σ → H0. Since Σ has
non-vanishing curvature, there is a disc Bρ ⊂ H0 (ρ-independent of H0) such that

π[σ] ≥ μH0 |Bρ
(9.8)

where μH0 is a Lebesque measure on H0. Hence

(9.7) ≥
∫
Bρ

∣∣∣∣∣
∑
m∈F

ame
i(m−m0).y

∣∣∣∣∣
2

dy. (9.9)

Since F ⊂ RS2 ∩H,F0 = F −m0 lies on a translate of some circle
{x ∈ H0; |x| = r}, r ≤ R.

Let r0 be sufficiently large (to be specified later).
We distinguish two cases.

Case 1: r < r0
Since Σm∈Famei(m−m0)·y is a nonzero trigonometric polynomial with frequencies

|m−m0| < r0, it follows that

(9.9) > C(ρ, r0). (9.10)

Case 2: r ≥ r0.
By Jarnik’s theorem,

F0 =
⋃
α

Fα

where #Fα ≤ 2 and dist (Fα,Fβ) � r1/3 for α �= β. Let η be a smooth bumpfunction,
supp η ⊂ Bρ. Then

(9.9) ≥
∫ ∣∣∣∣∣
∑
m∈F

ame
i(m−m0).y

∣∣∣∣∣
2

η(y)dy

=
∑
α

∫ ∣∣∣∣∣
∑
m∈Fα

ame
i(m−m0).y

∣∣∣∣∣
2

η(y)dy (9.11)

+
∑
α�=β

m∈Fα,n∈Fβ

amān

∫
ei(m−n).yη(y)dy (9.12)

and

|(9.12)| ≤
∑

m,n∈F
|m−n|�r1/3

|am| |an| C(ρ)
|m− n|10 <

C(ρ)
r0

. (9.13)
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Since #Fα ≤ 2, arguing as in the proof of the case d = 2 (see the Introduction),
we have for each α∫ ∣∣∣∣∣

∑
m∈Fα

ame
i(m−m0).y

∣∣∣∣∣
2

η(y)dy > c(ρ)
∑
m∈Fα

|am|2 (9.14)

and thus

(9.11) > c(ρ)

(∑
m∈F

|am|2
)

= c(ρ). (9.15)

From (9.11)–(9.15)

(9.9) > c(ρ) − C(ρ)
r0

>
1
2
c(ρ)

for appropriate r0. ��
This concludes the proof of Theorem 9.1.

10 Intersection of Nodal Sets with Submanifolds

We start by recalling the following result from [BR11a].

Theorem 10.1 ([BR11a]). Let Σ ∈ T
d be a real analytic, codimension one, hyper-

surface with nowhere-vanishing Gauss curvature. Then there is some EΣ > 0 so that
if E > EΣ, then Σ cannot be part of the nodal set of any eigenfunction ϕE with
eigenvalue E.

The reader is referred to [BR11a] for a discussion of this phenomenon. Our aim
here is to prove a quantitative version. Denote hs(A) the s-dimensional Hausdorff
measure of the set A.

Theorem 10.2. Let Σ be as above, E > EΣ and ϕE an eigenfunction of T
d with

eigenvalue E. Let N denote the nodal set of ϕE . Then

hd−2(N ∩ Σ) < CΣ

√
E. (10.1)

Recall at this point also the Donnelly–Fefferman theorem, stating that if M is a
real-analytic d-dimensional manifold and ϕE an eigenfunction
−Δϕ = Eϕ,Δ the Laplacian of M , then the nodal set N of ϕE satisfies

hd−1(N) < C
√
E (10.2)

where C = C(M). See [DF88].
As in [DF88], we will establish (10.1) combining Jensen’s inequality and Crof-

ton’s formula. Of course, an additional ingredient is needed, namely some type of
lower bound on the restriction ϕ|Σ.

First recall some basic facts on one-variable analytic functions.
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Lemma 10.3. Let f be a bounded analytic function on the unit disc D = {|z| < 1}.
Let a ∈ D 1

2
= {|z| < 1} such that f(a) �= 0 and denote ν(D 1

2
) the number of zeros

of f on D 1
2
. Then

ν(D 1
2
) ≤ C(

∣∣ log |f(a)|∣∣+ log[sup
z∈D

|f(z)|]). (10.3)

Hence

Lemma 10.4. Let f �= 0 be a real analytic function on
[ − 1

2 ,
1
2 ] with bounded

analytic extension to D. Let ν be the number of zeros of f . Then

ν ≤ C

(
min

x∈[− 1
2

1
2
]

∣∣∣ log |f(x)|
∣∣∣+ log

[
sup
z∈D

|f̃(z)
])

. (10.4)

Lemma 10.5. Let f be as in Lemma 10.4. Then

1
2∫

− 1
2

∣∣ log |f(x)|∣∣dx ≤ C min
a∈D 1

2

∣∣ log |f̃(a)|∣∣+ log
[
sup
z∈D

|f̃(z)| + 1
]
. (10.5)

Lemma 10.3 follows from Jensen’s theorem and (10.5) is easily deduced from
subharmonicity of log |f̃(z)|.

Lemma 10.5 generalizes to real analytic functions of several variables.

Lemma 10.6. Let f �= 0 be a real analytic function on [−1
2 ,

1
2 ]m, m ≥ 1 with

bounded analytic extension f̃ to the polydisc Dm. Denote

M = sup
z∈Dm

|f̃(z)| + 1.

Then ∫
[− 1

2
, 1
2
]m

∣∣ log |f(x)|∣∣dx ≤ C

(
min
a∈Dm

1
2

∣∣ log |f̃(a)|∣∣+ logM

)
. (10.6)

Proof. Fix a ∈ Dm
1
2
. From (10.5) applied to the function f̃(·, a2, . . . , am), we get

1
2∫

− 1
2

∣∣∣ log |f̃(x1, a2, . . . , am)|
∣∣∣dx1 ≤ C

∣∣ log |f̃(a)|∣∣+ C logM. (10.7)

Next, fix |x1| < 1
2 and apply (10.5) to the function f̃(x1, ., a3, . . . , am). Hence

1
2∫

− 1
2

∣∣ log |f̃(x1, x2, a3, . . . , am)|∣∣dx2 ≤ C
∣∣ log |f̃(x1, a2, . . . , am)|∣∣+ C logM. (10.8)
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Integrating (10.8) in x1 and using (10.7) gives
1
2∫

− 1
2

1
2∫

− 1
2

∣∣ log |f̃(x1, x2, a3, . . . , am)|∣∣dx1dx2 ≤ C
∣∣ log |f̃(a)|∣∣+ C logM. (10.9)

Iteration yields (10.6). ��
Lemma 10.7. Let f be as in Lemma 10.6 and

Z =
{
x ∈

[
− 1

2
,
1
2

]m
; f(x) = 0

}
Then

hm−1(Z) ≤ C

(
min
a∈Dm

1
2

∣∣ log |f̃(a)|∣∣+ logM

)
. (10.10)

Proof. For m = 1, (10.10) follows from (10.3).
For m > 1, we use Crofton’s formula

hm−1(Z) ∼
∫
L

[#(Z ∩ �)]d� (10.11)

where L � Gm,1 × R
m is the space of affine straight lines �.

Fix � ∈ L, � ∩ Z �= φ and let � = b + Rξ, b ∈ [−1
2 ,

1
2 ]m, |ξ| = 1. Denote I the

interval I = {x ∈ R; b+ xξ ∈ [−3
4 ,

3
4 ]m}. Let

g(x) = f(b+ xξ)

which is real analytic with analytic extension g̃ to {z ∈ C; dist(z, I) < 1
2} bounded

by logM . Lemma 10.4 implies

#[Z ∩ �] ≤ #{x ∈ I; g(x) = 0}

≤ cmin
x∈I
∣∣ log |g(x)|∣∣+ C logM

≤ c

∫
�∩[− 3

4
, 3
4
]m

∣∣ log |f(x)|∣∣+ C logM. (10.12)

Integration of (10.12) over L and invoking Lemma 10.6 gives

hm−1(Z) ≤ c

∫
[− 3

4
, 3
4
]m

∣∣ log |f(x)|∣∣+ C logM ≤ (10.10)

proving Lemma 10.7. ��
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Proof of Theorem 10.2. Let p : Q → Σ be a real analytic parametrization of Σ
where Q is an (d− 1)-dimensional interval. Thus

N ∩ Σ = p
({x ∈ Q;ϕ

(
p(x)

)
= 0}).

Since ϕ(x) = ϕE(x) = Σ
ξ∈Zd,|ξ|2=E

ϕ̂(ξ)e(x.ξ), the analytic extension

ϕ̃(z1, . . . , zd) =
∑

ϕ̂(ξ)e(z1.ξ1 + · · · + zdξd)

of ϕ to the polydisc Dd
2 obviously admits a bound

|ϕ̃| < E
d

2 e2
√
d
√
E = M (10.13)

(assuming ‖ϕ‖2 = 1). Thus ϕ ◦ p has an analytic extension to a complex neighbor-
hood of Q, bounded by M .

From Lemma 10.7

hd−2(N ∩ Σ) ∼ hd−2[x ∈ Q;ϕ
(
p(x)

)
= 0]

≤ cmin
a∈Q̃

∣∣ log |(ϕ ◦ p)∼(a)|∣∣+ c
√
E (10.14)

where Q̃ ⊂ C
d−1 is some complex neighborhood of Q.

For d = 2 or d = 3, our restriction theorem (lower bounds), assuming E > EΣ,
implies

max
x∈Σ

|ϕ(x)| �

⎛
⎝∫

Σ

|ϕ|2dσ
⎞
⎠

1
2

> cΣ (10.15)

therefore

logE � log |ϕ(p(a)∣∣ > −c

for some a ∈ Q.
For general dimension d, we do not have at this point a lower bound of the type

(10.15). However, the proof of the result in [BR11a] cited in the beginning of this
section, which uses the complexification (ϕ ◦ p)∼, implies in fact that for E > EΣ

max
a∈Q̃

|(ϕ ◦ p)∼(a)| > E−C (10.16)

where C is some constant. Hence (10.14) can be applied to obtain (10.1). This proves
Theorem 10.2.
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Remark. Theorem 10.2 should be compared with results in [TZ09] (d = 2). Using
the [TZ09] terminology, a real analytic hypersurface Σ ⊂ T

d with nowhere vanishing
curvature is ‘good’ in the since that

max |ϕ|
∣∣∣
Σ

‖ϕ‖2
> c−

√
E

Σ (10.17)

for ϕ = ϕE , E > EΣ.

The remainder of this section deals with the converse phenomenon.
We show for d = 2, 3 that if Σ ⊂ T

d is as above and E > EΣ, ϕ = ϕE an
eigenfunction with nodal set N , then

N ∩ Σ �= φ.

For d = 2, there is a more precise statement.

Theorem 10.8. Let Σ ⊂ T
2 be a real analytic curve which is not geodesic. Let

E ≥ EΣ and ϕE an eigenfunction with eigenvalue E and nodal set N . Then

cεE
1
2
−ε < #(N ∩ Σ) < CE

1
2 for all ε > 0. (10.18)

Proof. The upper bound follows from (the proof of) Theorem 10.2, noting that since
Σ is not a straight line segment, there is Σ′ ⊂ Σ with non-vanishing curvature. For
the lower bound, we can replace Σ by Σ′ and proceed as follows.

Fix ρ = 1
2 − ε0 and decompose

Σ =
⋃
α�Eρ

Σα

in arcs Σα of size E−ρ. From the lower bound (‖ϕ‖2 = 1)

cΣ =
∫
Σ

|ϕ|2dσ =
∑
α

∫
Σα

|ϕ|2dσ (10.19)

and the upper bound ‖ϕ‖∞ � Eε for all ε > 0, one easily sees that

#F = #

⎧⎨
⎩α;

∫
Σα

|ϕ|2dσ > cE−ρ

⎫⎬
⎭� Eρ−ε for all ε > 0. (10.20)

For α ∈ F ∫
∑

α

|ϕ|dσ > c
E−ρ

‖ϕ‖∞
. (10.21)
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Hence, if ∫
Σα

ϕdσ = o

(
E−ρ

‖ϕ‖∞

)
(10.22)

we can conclude that N ∩ Σα �= φ.
Let E = {ξ ∈ Z

2; |ξ|2 = E} and ϕ = Σξ∈E ϕ̂(ξ)e(x · ξ), ‖ϕ‖2 = 1.
Fix ε1 > 0 a small number and define

F1 =
{
α ∈ F ; min

ξ∈E
|→
t .ξ| > E

1
2
−ε1 for all tangent vectors

→
t of Σα

}
. (10.23)

Clearly

#(F\F1) � (#E)
E−ε1

E−ρ < Eρ−
ε1
2

and

#F1 >
1
2
(#F) � Eρ−ε (10.24)

by (10.20). Next, letting γ : I = [0, E−ρ] → Σα be an arclength parametrization of
Σα, α ∈ F1, write ∣∣∣∣∣∣

∫
Σα

ϕdσ

∣∣∣∣∣∣ ≤
∑
ξ∈E

|ϕ̂(ξ)|
∣∣∣∣∣∣
∫
I

e
(
ξ · γ(t))dt

∣∣∣∣∣∣
and by partial integration∣∣∣∣∣∣

∫
I

e
(
ξ · γ(t))dt

∣∣∣∣∣∣ � max
t∈I

1
|ξ · γ̇(t)| +

∫
I

|ξ · ..γ(t)|
|ξ · γ̇(t)|2dt � Eε1√

E

from the definition of F1. Hence, for α ∈ F1∣∣∣∣∣∣
∫
Σα

ϕdσ

∣∣∣∣∣∣�
Eε1+ε√
E

for all ε > 0 (10.25)

and (10.22) will hold if ε0 > ε1 and E large enough.
It follows that for E > EΣ,ε0

#(N ∩ Σ) ≥ (#F1) > E
1
2
−2ε0

proving Theorem 10.8. ��
For d = 3, we can show

Theorem 10.9. Let Σ ⊂ T
3 be a real analytic surface with non-vanishing curva-

ture. There is EΣ such that if E > EΣ, E �= 0, 4, 7 mod 8 and N is the nodal set of
ϕE , then

N ∩ Σ �= φ. (10.26)
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The argument allows more precise statements that we do not attempt to formu-
late here.

As before, (10.26) will be derived from a property∣∣∣∣∣∣
∫
Σ

ϕ(x)ω(x)dσ

∣∣∣∣∣∣ = o

⎛
⎝∫

Σ

|ϕ(x)ω(x)| dσ
⎞
⎠ (10.27)

with 0 ≤ ω ≤ 1 a smooth localizing function on Σ.
Letting

φ(x) =
∑
ξ∈E

φ̂(ξ)e(x · ξ), E = {ξ ∈ Z
3; |ξ|2 = E}.

Then (3.10) allows to bound the left side of (10.27) by (‖φ‖2 = 1)

∑
ξ∈E

|φ̂(ξ)|
∣∣∣∣∣∣
∫
Σ

e(x · ξ)ω(x)dσ

∣∣∣∣∣∣ �
∑
ξ∈E

|φ̂(ξ)|√
E

� E− 1
2 (#E)

1
2 � E− 1

4
+ε. (10.28)

According to Theorem 9.1, ∫
Σ

|ϕ|2ωdσ > c (10.29)

and hence, certainly∫
Σ

|ϕ|ωdσ > c

‖ϕ‖∞
>
(∑

|ϕ̂(ξ)|
)−1 � E− 1

4
−ε

which is barely insufficient to conclude.
Instead of interpolating L2(Σ, dσ) between L1(Σ, dσ) and L∞(Σ, dσ), interpolate

L2(Σ, dσ) between L1(Σ, dσ) and L4(Σ, dσ)

c <

∫
Σ

|ϕ|2ωdσ ≤
(∫

|ϕ|ωdσ
) 2

3
(∫

|ϕ|4ωdσ
) 1

3

(10.30)

reducing to problem to establish a bound of the form∫
Σ

|ϕ|4ωdσ < E
1
2
−ε0 (10.31)

for some ε0 > 0.
Note that from Theorem 8.1 ∫

Σ

|ϕ|2ωdσ < C (10.32)
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and therefore ∫
Σ

|ϕ|4ωdσ < C‖ϕ‖2
∞ ≤ C

(∑
|ϕ̂(ξ)|

)2 � E
1
2
+ε. (10.33)

Decomposing ϕ = ϕ1 + ϕ2, with

ϕ1(x) =
∑

|ϕ̂(ξ)|>E− 1
4 +ε1

ϕ̂(ξ)e(x · ξ)

the bound (10.33) implies that∫
Σ

|ϕ1|4ωdσ < E
1
2
−2ε1

and hence we may assume

|ϕ̂(ξ)| < E− 1
4
+. (10.34)

Fix ρ = 1
2 − τ , τ > 0 sufficiently small, and partition

E =
⋃
α

Eα

in ∼ E2τ sets of diameter at most Eρ. Write

ϕ =
∑
α

ϕα with ϕα(x) =
∑
ξ∈Eα

ϕ̂(ξ)e(x · ξ)

and ∫
Σ

|ϕ|4ωdσ ≤ E2τ
∑
α

∫
Σ

|ϕα|2|ϕ|2ωdσ. (10.35)

We choose τ small enough for Linnik’s equidistribution property to imply

#Eα � E
1
2
−2τ+o(1) for each α (10.36)

(this is where we need to assume E �= 0, 4, 7 mod 8). Expanding in Fourier and using
again (3.10), we obtain∫

Σ

|ϕ|2|ϕα|2ωdσ

�

∣∣∣∣∣∣
∑

ξ1−ξ2+ξ3−ξ4 �=0

ϕ̂(ξ1)ϕ̂(ξ2) ϕ̂α(ξ3)ϕ̂α(ξ4)
eiψ(ξ1−ξ2+ξ3−ξ4)

|ξ1 − ξ2 + ξ3 − ξ4|

∣∣∣∣∣∣ (10.37)

+
∑

ξ1,ξ2,ξ3,ξ4

|ϕ̂(ξ1)| |ϕ̂(ξ2)| |ϕ̂α(ξ3)| |ϕ̂α(ξ4)| (1 + |ξ1 − ξ2 + ξ3 + ξ4|)−2.

(10.38)
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From (10.34), clearly

(10.38) < E−1+o(1)
∑

ξ1,ξ2∈E;ξ3,ξ4∈Eα

(1 + |ξ1 − ξ2 + ξ3 − ξ4|)−2

� E−1+o(1)
∑

2k<E
1
2

4−k#{(ξ1, ξ2, ξ3, ξ4) ∈ E2 × E2
α; |ξ1 − ξ2 + ξ3 − ξ4| < 2k}.

(10.39)

We need to estimate for r < R

#{(ξ1, ξ2, ξ3, ξ4) ∈ E2 × E2
α; |ξ1 − ξ2 + ξ3 − ξ4| < r}. (10.40)

Let Pδ be an approximate identity on T
3. Then

(10.40) �
∫
T3

∣∣∣∣∣∣
∑
ξ∈E

e(x.ξ)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∑
ξ∈Eα

e(x.ξ)

∣∣∣∣∣∣
2

P 1
r
(x)dx

� r3
∫
T3

∣∣∣∣∣∣
∑
ξ∈E

e(x.ξ)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∑
ξ∈Eα

e(x.ξ)

∣∣∣∣∣∣
2

dx

= r3#{(ξ1, ξ2, ξ3, ξ4) ∈ E2 × E2
α; ξ1 − ξ2 = ξ3 − ξ4} (10.41)

≤ r3|Eα|2
[
max
v∈Z3

(#{(ξ, η) ∈ E2; ξ − η = v})
]

� r3|Eα|2Eε
� r3E1−4τ+ε. (10.42)

We used here (10.42) and the bound

#{(ξ, η) ∈ Z
3 × Z

3 : |ξ|2 = E = |η|2 and ξ − η = v} � Eε (10.43)

which is a consequence of (2.6).
Another bound on (10.38) is obtained by fixing ξ2 ∈ E , ξ3, ξ4 ∈ Eα and observing

that ξ1 ∈ E is restricted to some ball of radius r. Hence, invoking Lemma 8.9,

(10.40) � |Eα|2|E|Eε
(

1 + r

(
r√
E

) 1
20

)

� E
3
2
−4τ+ε

(
1 + r

(
r√
E

) 1
20

)
. (10.44)

Thus

(10.38) � E−4τ+ε
∑

2k<E
1
2

min

(
2k, 4−kE

1
2 + 2−kE

1
2

(
2k√
E

) 1
20

)
� E

1
4
−4τ+ε. (10.45)
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Next, we estimate (10.37). Let 0 ≤ η ≤ 1 be a bump function on R
3 such that

η(x) = 0 if |x| < 1
2 or |x| ≥ 2. Estimate

(10.37) <
∑

2k<
√
E

∣∣∣∣∣∣
∑

ξ1,ξ2,ξ3,ξ4

η

(
ξ1 − ξ2 + ξ3 − ξ4)

2k

)
ϕ̂(ξ1)ϕ̂(ξ2)ϕ̂α(ξ3)ϕ̂α(ξ4)

× eiψ(ξ1−ξ2+ξ3−ξ4)

|ξ1 − ξ2 + ξ3 − ξ4|

∣∣∣∣∣∣ . (10.46)

Ignoring the oscillatory factor, the k-term in (10.46) can be estimated by

E−1+o(1)2−k[#{(ξ1, ξ2, ξ3, ξ4) ∈ E2 × E2
α; |ξ1 − ξ2 + ξ3 − ξ4| � 2k}] (10.47)

recalling (10.34). From (10.42), (10.44)

(10.47) � E−4τ+ε min

(
4k, 2−kE

1
2 + E

1
2

(
2k√
E

) 1
20

)

� E
1
3
−4τ+ε + E

1
2
−4τ+ε

(
2k√
E

) 1
20

. (10.48)

This estimate is conclusive unless 2k > E
1
2
−ε1 � Eρ (ε1 > 0 an arbitrary small fixed

constant). For such k, the oscillatory factor in (10.46) cannot be ignored.
Estimate the k-term in (10.46) by

(#Eα)2 · E− 1
2
+ε max

ξ3,ξ4∈Eα

∣∣∣∣∣∣
∑

ξ1,ξ2∈E
η

(
ξ1 − ξ2 + ξ3 − ξ4

2k

)
ϕ̂(ξ1)ϕ̂(ξ2)

× eiψ(ξ1−ξ2+ξ3−ξ4)

|ξ1 − ξ2 + ξ3 − ξ4|

∣∣∣∣∣∣
� 2−kE−4τ+ε

⎧⎪⎪⎨
⎪⎪⎩ max

|v|<Eρ

|aξ|,|bξ|≤1

∣∣∣∣∣∣∣∣
∑

ξ1,ξ2∈E
|ξ1−ξ2|>2k−2

aξ1bξ2 e
iψ(ξ1−ξ2+v)

∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭ . (10.49)

In establishing (10.31), we may obviously assume diam(supp ϕ̂) < c
√
E (c as in

Lemma 7.2). It remains to get a nontrivial bound on∑
ξ1,ξ2∈E

2k−2<|ξ1−ξ2|<c
√
E

ξ1−ξ2+v∈Z

aξ1bξ2 e
iψ(ξ1−ξ2+v) (10.50)
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where |v| < Eρ, ρ < 1
2 − ε1. The same analysis used to prove Lemma 7.2 gives an

estimate

|(10.50)| < E1−γ (10.51)

for some γ > 01

Hence

(10.49) � E
1
2
−γ−4τ+ε1+ε < E

1
2
− 1

2
γ−4τ . (10.52)

Thus from (10.48), (10.52), we obtain

(10.37) � E
1
2
−4τ− 1

20
ε1+ε + E

1
2
− 1

2
γ−4τ (10.53)

and recalling (10.35)∫
Σ

|ϕ|4dσ � E4τ × (10.53) < E
1
2
− 1

21
ε1 + E

1
2
− 1

2
γ . (10.54)

This completes the proof of (10.31) and Theorem 10.9. ��
Remark. It is easily seen that if Σ ⊂ T

3 is a smooth surface, then

max
‖ϕE‖2=1

⎛
⎝∫

Σ

|ϕE |4dσ
⎞
⎠ � 1

E
(#{ξ ∈ Z

3; |ξ|2 = E})2 (10.55)

(consider the contribution of Σ′ ∩B(0, 1
10R) with 0 ∈ Σ′ a shift of Σ).

Since by (2.3) there are arbitrary large eigenvalues E for which

#{ξ ∈ Z
3; |ξ|2 = E} � E1/2(log logE) (10.56)

one cannot hope for uniform L4-restriction bounds.

11 Higher Dimension

11.1. We are not able at the time of this writing to prove either Theorem 8.1 or
Theorem 9.1 in dimension ≥ 4.

It was proven by Hu [Hu09] that if (M, g) is a smooth compact Riemannian man-
ifold of dimension d and Σ a smooth submanifold of dimension d − 1 with positive
(or negative) definite second fundamental form, then

‖ϕE‖L2(Σ) < CΣE
1
12 ‖ϕE‖L2(M) (11.1)

1 Letting R =
√
E, v′ = v

R
, |v′| < R−2τ , consider the function ψ(x− y + v′) with x, y ∈ S2. The

sets Wδ,δ1 considered in Lemma 4.3 for the function ψ
(
p(x)−p(y)) remain the same for the function

ψ
(
p(x) − p(y) + v′), since δ, δ1 > R−ε while |v′| < R−2τ , ε < τ . Thus the analysis from Section 4

still applies and we obtain Lemma 5.2 for ψ(x− y) replaced by ψ(x− y + v).
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for all eigenfunctions ϕE ,−ΔϕE = EϕE of the Laplace–Beltrami operator Δ of M .
For d = 2, the result is due to [BGT07].

In the case of the flat torus M = T
d, one can show an improvement over (11.1)

in arbitrary dimension

‖ϕE‖L2(Σ) < CΣE
1
12

−εd‖ϕE‖L2(Td) (11.2)

for some εd > 0 (with same assumption on Σ).
We will not present the proof here, as we believe the validity of our Theorem 8.1

in any dimension is the truth.

11.2. Theorem 8.1 in its dual formulation is the following statement about restric-
tion of the Fourier transform.

Theorem 11.1. Let Σ ⊂ T
3 be real analytic with nowhere vanishing curvature.

For E ∈ Z+, denote

EE = {ξ ∈ Z
3; |ξ|2 = E}.

Then the restriction operator

L2
(
Σ, dσ

)
→ �2(EE) : μ → μ̂|EE

has norm bounded by CΣ.

Setting R =
√
E, our argument involves the following properties of E = EE ⊂

RS2:

(i) There is ε1 > 0 such that if r = R1−ε1 and Cr ⊂ RS2 is a cap of size r,
then (for some sufficiently small ε > 0)

|E ∩ Cr| �
( r
R

)2
R1+ε (11.3)

(ii) There is some constant η > 0 such that if r < R and Cr ⊂ RS2, then

|E ∩ Cr| � Rε
[( r
R

)η
r + 1

]
for all ε > 0 (11.4)

(iii) Denoting {Cα} a partition of RS2 in cells of size ∼ √
R,∑

α

|E ∩ Cα|2 � R1+ε for all ε > 0 (11.5)

holds.

Note that we did not use the fact that E ⊂ Z
3.

The ‘idealization’ of E is a set S ⊂ RS2 which elements are
√
R-separated. For

such sets S, the restriction operator

L2
(
Σ, dσ

)
→ �2(S) : μ → μ̂

∣∣
S (11.6)
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with Σ as in Theorem 11.1, is easily seen to be bounded. By (3.10), it suffices indeed
to show that

∑
ξ,ξ′∈S

|aξ| |aξ′ |
|ξ − ξ′| + 1

≤ C

⎛
⎝∑
ξ∈S

|aξ|2
⎞
⎠ . (11.7)

Our assumption on S implies that maxξ′
(
Σξ∈S 1

|ξ−ξ′|
)
< C and (11.7) follows from

Schur’s test.
Surprisingly, the higher dimensional analogue, where one considers a set S ⊂

RSd−1 of R
1

d−1 -separated points as idealization of E = {ξ ∈ Z
d; |ξ|2 = R2}, may fail

for d large enough. This illustrates the difficulty of proving Theorem 8.1 for general
dimension and the need to exploit somehow that E ⊂ Z

d.
In the next example Σ = Sd−1.

Lemma 11.2. Let d ≥ 8. Then for large R there is a set S = S(R) ⊂ {x ∈ R
d| |x| =

R} with the following property

|ξ − ξ′| � R
1

d−1 for ξ �= ξ′ in S (11.8)

and such that the operator

L2(Sd−1, dσ) → �2(S) : μ �→ μ̂|S

has norm at least R
1
6
− 1

d−1 .

Proof. Let K = [R
1

d−1 ]. In fact we will only use points in the cap

C = {|x| = R} ∩B
(
Red,

1
100

R2/3
)

(see Fig. 4). We choose

S =
{(

Kz1, . . . ,Kzd−1,
√
R2 −K2(z2

1 + · · · + z2
d−1)

)
, zi ∈ Z, |z| < R2/3

100K

}
.

(11.9)

Next, we introduce the measure μ on Sd−1, ‖dμdσ‖2 = 1. Let

F = {(y1, . . . , yd−1) ∈ Z
d−1; y2

1 + · · · + y2
d−1 = K2}

Thus

|F| ∼ Kd−3.

Define

Ω =
{
x = (x1, . . . , xd) ∈ Sd−1; dist

(
x′,

1
K

F
)
< R− 2

3

}
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Figure 4: The cap C

where x′ = (x1, . . . , xd−1). Hence

1 − x2
d = |x′|2 > 1 − 2R−2/3 and |xd| <

√
2R− 1

3 .

Also

|Ω| ∼ |F| ·R− 2
3
(d−2)R− 1

3 ∼ Kd−3R− 2
3
d+1. (11.10)

Define μ on Sd−1 by

dμ

dσ
=
e(−R · xd)

|Ω| 1
2

1Ω. (11.11)

Evaluate ∑
ξ∈S

|μ̂(ξ)|2 = |Ω|−1
∑
ξ∈S

|1̂Ω(ξ −Red)|2. (11.12)

Note that S −Red is contained in 1
100R

2/3 × · · · × 1
100R

2/3 × 1
100R

1/3 and therefore,
from definition of Ω and S

e
(
(ξ −Red) · x) ≈ e(ξ1x1 + · · · + ξd−1xd−1)

≈ e(Kz · x′) = 1 (11.13)

for ξ ∈ S, x ∈ Ω and z ∈ Z
d−1 ∩B(0, R2/3

100K

)
. It follows from the definition of Ω that

‖μ̂|S‖2
2 � |S| |Ω| ∼

(R2/3

K

)d−1 ·Kd−3R− 2
3
d+1 = R

1
3K−2 (11.14)

hence the claim. Note that we may replace S by T (S), with T an arbitrary orthogonal
transformation of R

d, with the same conclusion for the restriction operator. ��
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12 Restriction Upper Bounds for Generic Eigenvalues

In this section we prove Theorem 1.10. The proof of Theorem 1.10 is based on the
following arithmetic statement (Lemma 2.9 in [BR11b]).

Lemma 12.1. Fix ε > 0 and taking N ∈ Z+ large, E ∈ {1, . . . , N} and λ =
√
E,

one has that

min
x �=y∈Z

2

|x|=λ=|y|
|x− y| > λ1−ε (12.1)

except for a set of E-values of size at most N1− ε

3 .

We recall the argument.

Proof of Lemma 12.1. Let M =
√
N and estimate the size of the set

S = {x ∈ Z
2; |x| ≤ M and 2x.z = |z|2 for some z ∈ Z

2, 0 < |z| < M1−ε}. (12.2)

Writing z = d.z′, d ∈ Z+ and z′ = (z′
1, z

′
2) ∈ Z

2 primitive, the equation

2x.z′ = d|z′|2 (12.3)

has at most c M|z′| solutions in x, |x| ≤ M , for given z′ primitive.
Hence

|S| ≤ C
∑

1≤d<M

∑
z′∈Z

2

0<|z′|<M1−ε

d

M

|z′| < C
∑
d<M

M2−ε

d
< CM2−ε logN.

Since |S| is obviously an upper bound for the number of exceptional E ∈ {1, . . . , N},
Lemma 12.1 follows.

Theorem 1.10 is therefore a consequence of

Lemma 12.2. Let ε > 0 be small enough and E = λ2 ∈ Z+ satisfy (12.1).
Let Σ be a C2-smooth curve in T

2. Then any eigenfunction ϕλ of T
2 satisfies

‖ϕλ‖L2(Σ) ≤ CΣ‖ϕλ‖2. (12.4)

Proof. Let γ : I → Σ, I ⊂ [0, 1], be an arclength parametrization. Fix 1
2 < ρ < 1

and partition I =
⋃
Is, Is = [ts, ts+1] in intervals of size λ−ρ. Since

γ(t) = γ(ts) + (t− ts)γ̇(ts) +O(λ−2ρ)

for t ∈ Is, it follows that∣∣∣∣∣∣
∫
I

eiξ.γ(t)dt

∣∣∣∣∣∣ ≤
∑
s

∣∣∣∣∣∣
ts+1∫
ts

eiξ·γ(t)dt

∣∣∣∣∣∣
=
∑
s

∣∣∣∣∣∣
λ−ρ∫
0

eiξ·γ̇(ts)udu

∣∣∣∣∣∣+O(|ξ|λ−2ρ). (12.5)
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Denote E = {ξ ∈ Z
2; |ξ| = λ} and ϕ =

∑
ξ∈E aξe(x · ξ), ‖ϕ‖2 ≤ 1. Estimate using

(12.5)

∫
Σ

|ϕ|2dσ ≤
∑
ξ,ξ′∈E

|aξ| |aξ′ |
∣∣∣∣∣∣
∫
I

e
(
γ(t) · (ξ − ξ′)

)
dt

∣∣∣∣∣∣
≤
∑
s

∑
ξ,ξ′∈E

|aξ| |aξ′ | min
{
λ−ρ,

1
|(ξ − ξ′) · γ̇(ts)|

}
+ |E|2λ1−2ρ. (12.6)

Fix 1 ≤ s ≤ λρ. If we fix ξ ∈ E and let ξ′ ∈ E\{ξ} vary, it follows from (12.1) that

|Pγ̇(ts)(ξ − ξ′)| � λ−ε|ξ − ξ′| � λ1−2ε (12.7)

except for at most 1 element. Thus (12.7) holds for (ξ, ξ′) �∈ Es where Es ⊂ E has the
property that for each ξ (resp. ξ′) there is at most one ξ′ (resp. ξ) with (ξ, ξ′) ∈ Es.
From (12.7)

(12.6) �
∑
s

∑
ξ,ξ′∈E

|aξ| |aξ′ |λ−1+2ε +
∑
s

λ−ρ ∑
(ξ,ξ′)∈Es

|aξ| |aξ′ | + |E|2λ1−2ρ

� λ−1+ρ+2ε|E|2 + max
s

∑
(ξ,ξ′)∈Es

|aξ| |aξ′ | + |E|2λ1−2ρ

� 1 + |E|2(λ−1+ρ+2ε + λ1−2ρ) � 1

for ε > 0 small enough, since 1
2 < ρ < 1.

This proves Lemma 12.2. ��

13 The Number of Nodal Domains for a Random Eigenfunction

In this section we prove the analogue of the Nazarov–Sodin theorem [NS09] on the
number of nodal domains for T

d, d ≥ 3. We restrict ourselves to d = 3 as some extra
arithmetical assumptions are required in this case.

Theorem 13.1. Let d = 3. Assume E = λ2 ∈ Z sufficiently large and E �=
0, 4, 7(mod 8). The number of components of the nodal set N of a ‘typical’ eigen-
function ϕλ is of the order λ3.

Proof. In [NS09], the corresponding result is proven for the sphere, based on a ‘bar-
rier’ argument. It turns out that the same method can be easily adapted to the
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torus T
d, at least when d ≥ 3, to produce the required lower bound (the upper

bound follows from Courant’s nodal domain theorem).
First, denoting Xλ = span {ϕ; −Δϕ = λ2ϕ} and P (Xλ) the corresponding pro-

jective space, a generic element of P (Xλ) is represented by a Gaussian random
variable

ϕω(x) =
1

|E| 1
2

∑
ξ∈E

(
gξ(ω) cos 2πx · ξ + hξ(ω) sin 2πx · ξ) (13.1)

with E ∩ (−E) = φ, E ∪ (−E) = {ξ ∈ Z
d : |ξ| = λ} and {gξ}, {hξ} independent, real,

normalized Gaussian random variables.
Denoting

{fj} = {
√

2 cos 2πx · ξ,
√

2 sin 2πx · ξ : ξ ∈ E} (13.2)

rewrite ϕω as

ϕω =
1√
2|E|

∑
1≤j≤2|E|

gj(ω)fj (13.3)

where {gj} are as above.
Denote N = 2|E| and let T be an N ×N orthogonal matrix. Defining

Fi(x) =
N∑
j=1

Tijfj(x) (13.4)

the Gaussian random variable ϕω has the same distribution as

ψω =
1√
N

N∑
j=1

gj(ω)Fj (13.5)

(by invariance of the Gaussian ensemble under the orthogonal group).
Choose T with

T1j =

{
1√
|E| if fj is even

0 if fj is odd.
(13.6)

Hence

F1(x) =
√

2√|E|
∑
ξ∈E

cos 2πx · ξ (13.7)

that we use as our ‘barrier’ function.
Rewrite

ψω =
1√
N
g1(ω)F1 +Gω (13.8)

with Gω independent of g1.
Taking in (13.7) ‖x‖ � λ−1, it follows from the equidistribution of lattice points

on the sphere (this is why we impose the condition E �= 0, 4, 7 mod 8, see Sect. 2.1)
that
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F1(x) =
√
N

⎧⎨
⎩
∫
S2

(cos 2πλx · ζ)σ(dζ) +O(λ−ε)

⎫⎬
⎭

=
√
N
(
σ̂(λ|x|) +O(λ−ε)

)
. (13.9)

Therefore, there is some r ∼ 1
λ such that (for some constant c > 0)

F1(x) < −c
√
N for |x| = r. (13.10)

Also, clearly

F1(0) =
√
N. (13.11)

Assume we show that for some constant C1,

max
|x|≤r

|Gω(x)| < C1 (13.12)

holds with probability at least 1
2 in ω.

Since g1(ω) is independent of Gω, it follows from (13.10), (13.11)

ψω(0) ≥ g1(ω) − |Gω(0)| > C2 − C1 > 1 (13.13)

and for |x| = r

ψω(x) < −cg1(ω) + max
|x|=r

|Gω(x)| < −cC2 + C1 < −1 (13.14)

with probability at least 1
2e

−C2
2 > c3 > 0 in ω. For such ω, since ψω satisfies (13.13),

(13.14), the ball B(x, r) ⊂ T
3 will necessarily contain a nodal component.

Partitioning T
3 in boxes Qα of size ∼ 1

λ and observing that ϕω and any translate
ϕω(· + a), a ∈ T

3, are random variables with the same distribution, the preceding
implies that, with large probability in ω, the nodal set Nω of ϕω satisfies

#{α;Qα contains a component of Nω} ∼ λ3

and hence ϕω has at least ∼ λ3 nodal components.
It remains to justify (13.12).
Take a radial bumpfunction η on R

3 such that

η(x) ∼ e−|x| and η̂(x) = 1 for |x| = 1 (13.15)

and set ηλ(x) = λ3η(λx). Thus η̂λ(x) = 1 for |x| = λ and therefore

Gω = Gω ∗ ηλ. (13.16)

Since
∫
ηλ =

∫
η < C, clearly ∫

R3

|Gω(x)|ηλ(x)dx < C (13.17)

with probability at least 1
2 in ω.

Let |y| ≤ r. By (13.16), |Gω(y)| ≤ ∫ |Gω(x)|ηλ(x − y)dx, and since ηλ(x − y) ∼
ηλ(x) for |y| � 1

λ by the choice of η in (13.15), (13.12) follows from (13.17).
This completes the proof of Theorem 13.1. ��
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Appendix A. Lattice Points in Caps (d ≥ 4)

Let N = R2 ∈ Z. We show the following

|ER ∩ Cr| �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

rd−1

R + rd−3 if d ≥ 7

r5

R + (logω(N))2r3 if d = 6

r4

R + r2+εRε if d = 5

r3

R (logω(N))2 + r
3
2+εRε if d = 4.

(A.1)

Let N = R2 and b = (b1, . . . , bd) ∈ E ∩ Cr. Then

|ER ∩ Cr| ≤ |{x ∈ Z
d|x2

1 + · · · + x2
d = N and |xj − bj | ≤ r}|

≤
∣∣∣∣∣∣
⎧⎨
⎩y ∈ Z

d ∩Br

∣∣∣ d∑
j+1

y2
j + 2bjyj = 0

⎫⎬
⎭
∣∣∣∣∣∣ . (A.2)

Let γ be a smooth bump function. Express (A.2) by the circle method as

∫
T

d∏
j=1

[∑
γ
(y
r

)
e
(
(y2 + 2bjy)t

)]
dt. (A.3)

Denote

G(t, ϕ) =
∑

y

γ
(y
r

)
e
(
y2t+ yϕ

)
. (A.4)

Let

t =
a

q
+ β, q < r, (a, q) = 1 and |β| < 1

qr
. (A.5)

By Poisson summation

G(t, ϕ) ∼
∑
m∈Z

S(a,m; q)J(ϕ, β,m; q) (A.6)

where

S(a,m; q) =
1
q

q−1∑
k=0

eq(k2a− km) (A.7)
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and

J(ϕ, β,m; q) =
∫
R

γ
(y
r

)
e

((
ϕ+

m

q

)
y + y2β

)
dy. (A.8)

Note that certainly

|J(ϕ, β,m; q)| � min

(
r,

1√|β|

)
(A.9)

and also (for appropriate choice of γ)

|J | � r e−(r|ϕ+ m
q |)1/2

if
∣∣∣ϕ+

m

q

∣∣∣ > 2r|β|. (A.10)

In particular, it follows from (A.10) that (A.6) only involves a few significant terms.
Substitution of (A.6) in (A.3) gives

∑
m1,...,md

⎧⎨
⎩

d∏
j=1

S(a,mj − 2abj , q)

⎫⎬
⎭
⎧⎨
⎩

d∏
j=1

J(2bjβ, β,mj ; q)

⎫⎬
⎭ (A.11)

where it remains to perform the sum over (a; q) = 1, integrate in |β| < 1
rq and sum over

q < r.
Since

S(a,m; q) = S(1, 0, q)
(
a

q

)
eq(m2a′) a′a ≡ 1(mod q) (A.12)

the first factor in (A.11) equals

S(1, 0, q)d

(
a

q

)d

eq

⎛
⎝a′

⎛
⎝∑

j

(mj − 2abj)2

⎞
⎠
⎞
⎠ ∼ S(1, 0, q)d

(
a

q

)d

eq(4aN + a′|m|2).

(A.13)

Summing (A.13) over a, (a, q) = 1 (the sum factors over the prime factorization of q) and
applying Weil’s bound on the Kloosterman sum (d even) or Salié sum (d odd), gives the
bound

q− d
2 ·
{√

qτ(q) d odd√
qτ(q)(q,N)

1
2 d even.

(A.14)

Hence

(A.3) ≤
∑
q≤r

(q,N)
1
2 τ(q)

q
d−1
2

∑
m1,...,md

∫ d∏
j=1

|J(2bjβ, β,mj ; q)|dβ. (A.15)

Since |b| = R, we may assume |b1| ∼ R.
From (A.9), (A.10))

∑
m

|J(ϕ, β,m; q)| � 1√
β

+ re−( r
q )

1
2 � 1√

β
(A.16)
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since |β| < 1
rq . Hence

(A.15) ≤
∑
q≤r

(q,N)
1
2 τ(q)

q
d−1
2

∑
m1

∫ |J(2b1β, β,m1, q)|
(
√
β + 1

r )d−1
dβ. (A.17)

From (A.10)

|J(2b1β, β,m1, q)| < r e−(r|2b1β+
m1
q |) 1

2 if
∣∣∣2b1β +

m1

q

∣∣∣ > 2r|β| (A.18)

and hence ∑
m1

|J(2b1β, β,m1, q)| < r e−( r
q ‖2b1qβ‖)

1
2 if ‖2b1qβ‖ > 2rq.|β|. (A.19)

We use this property to get a better estimate.
Write

β =
�

2b1q
+ β′, |β′| < 1

4|b1|q and � ∈ Z, |�| � |b1|
r

∼ R

r
. (A.20)

Thus (A.19) implies

∑
m

|J(2b1β, β,m; q)| � r e−(rR|β′|) 1
2 if |β′| > 10

r�

R2q
. (A.21)

Contribution of |β| < 1
r2 :

For such β, from (A.20), |�| � Rq
r2 and (A.21) will hold if |β′| � 1

Rr .
Since for |β′| � 1

Rr , (A.21) is certainly true, it is always valid.
The m1-sum in (A.17) is therefore bounded by

rd−1

(
1 +

Rq

r2

)
r

∫
e(−rR|β′|) 1

2 dβ′

< rd−1

(
1
R

+
q

r2

)
. (A.22)

This gives the contribution

rd−1

R

⎛
⎝∑

q≤r

τ(q)(q,N)
1
2

q
d−1
2

⎞
⎠+ rd−3

⎛
⎝∑

q≤r

τ(q)(q,N)
1
2

q
d−3
2

⎞
⎠ . (A.23)

Contribution of |β| > 1
r2 :

Let |β| ∼ B
r2 with B < r

q . Then |�| ∼ RqB
r2 and (A.21) will hold if |β′| � B

rR .
Using also (A.16) the contribution in (A.17) is at most

∑
q≤r

(q,N)
1
2 τ(q)

q
d−1
2

(
r2

B

) d−1
2
(

1 +
RqB

r2

)(
B

rR

r√
B

+ r

∫
e−r(R|β′|) 1

2 dβ′
)

≤ rd−1

R
B− d−2

2

∑
q≤r

(q,N)
1
2 τ(q)

q
d−1
2

+ rd−3
∑
q≤r

τ(q)(q,N)
1
2

q
d−3
2

B− d−4
2 . (A.24)
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Summing (A.24) over dyadic values of B < r
q gives (A.23), except if d = 4, where in the

second sum there is an additional log r
q factor.

It remains to estimate the q-sums in (A.23)

∑
q≤r

(q,N)
1
2 τ(q)

q
d−1
2

≤

⎛
⎜⎜⎝∑

c|N
c≤r

τ(c)

c
d
2 −1

⎞
⎟⎟⎠
(∑

q1<r

1

q
d−1
2 −ε

1

)
<

{
C for d ≥ 5
C (log ω(N))2 for d = 4 (A.25)

and

∑
q≤r

(q,N)
1
2 τ(q)

q
d−3
2

≤

⎛
⎜⎜⎝∑

c|N
c≤r

τ(c)

c
d
2 −2

⎞
⎟⎟⎠
(∑

q1<r

τ(q1)

q
d−3
2

1

)
�
⎧⎨
⎩
C for d ≥ 7
C (log ω(N))2 for d = 6
Rε for d = 5

(A.26)

while for d = 4, we have

∑
q≤r

(q,N)
1
2 τ(q)

q
1
2

log
r

q
� r

1
2+εRε. (A.27)

This gives (A.1).
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[Jar26] V. Jarnik. Über die Gitterpunkte auf konvexen Kurven. Mathematische
Zeitschrift, (1)24 (1926), 500–518.

[NS09] F. Nazarov and M. Sodin. On the number of nodal domains of random spherical
harmonics. American Journal of Mathematics, 131 (2009), 1337–1357.

[Sog88] C. Sogge. Concerning the Lp-norm of spectral clusters for second-order elliptic
operators on compact manifolds. Journal of Functional Analysis, (5)77 (1988),
123–138.

[Sog11] C. Sogge. Kakeya-Nikodym averages and Lp-norms of eigenfunctions. Tohoku
Mathematical Journal (to appear), (2)4 63 (2011), 519–538.

[Sar90] P. Sarnak. Some Applications of Modulus Forms. Cambridge Tracts in Mathe-
matics, 99. Cambridge University Press, Cambridge (1990).

[Sar] P. Sarnak. Private communication.
[TZ09] J. Toth and S. Zelditch. Counting nodal times which touch the boundary of

an analytic domain. Journal of Differential Geometry, (3)18 (2009), 649–686.

Jean Bourgain, School of Mathematics, Institute for Advanced Study, Princeton,
NJ 08540, USA bourgain@ias.edu

Zeév Rudnick, Raymond and Beverly Sackler School of Mathematical Sciences,
Tel Aviv University, Tel Aviv 69978, Israel rudnick@post.tau.ac.il

Received: May 15, 2011
Revised: September 22, 2011

Accepted: September 29, 2011


	Restriction of toral eigenfunctions to hypersurfaces and nodal sets
	Abstract
	1 Introduction
	2 Lattice Points in Spherical Caps
	2.1 Lattice points on spheres.
	2.2 Lattice points in spherical caps: Statement of results.
	2.3 Intersections with hyperplanes.
	2.4 Small caps.
	2.5 A linear and sub-linear bound.
	2.6 Proof of Lemma 2.3.

	3 The Fourier Transform of Surface-Carried Measures
	4 Spherical Restriction of the Phase Function
	5 Estimation of Certain Oscillatory Sums
	6 An Exponential Sum Estimate
	7 Mean Equidistribution Property of Lattice Points
	8 Restriction Upper Bound
	9 Restriction Lower Bounds
	10 Intersection of Nodal Sets with Submanifolds
	11 Higher Dimension
	12 Restriction Upper Bounds for Generic Eigenvalues
	13 The Number of Nodal Domains for a Random Eigenfunction
	Appendix A. Lattice Points in Caps (d geq 4)
	References


